

SHIBAURA THERMISTORS ELEMENTS & SENSORS

SHIBAURA ELECTRONICS CO., LTD.

Name	Location	Phone	Fax
Head Office		+81-48-615-4000	+81-48-615-4001
Urawa Office	Sanshoku Bldg. 2-1-24, Kamiochiai, Chuo- ku, Saitama City, Saitama 338-0001, Japan	+81-48-615-4001	+81-48-615-4101
Overseas Sales Department	. Ku, Galama Oly, Galama Goo-Goo I, Gapan	+81-48-615-4200	+81-48-615-4201
Osaka Office	Urban Research Bldg. 1-6-4, Kyoumachibori, Nishi-ku, Osaka 550-0003, Japan	+81-6-6479-6000	+81-6-6479-6010
Nagoya Office	Pacific Square Nagoya Nishiki 5F 2-5-12, Nishiki, Naka-ku, Nagoya 460-0003, Japan	+81-52-203-4821	+81-52-203-4823
Shibaura Electronics Korea Co., Ltd.	1019#, 293 Hyundae 41 Tower, Mok-dong, Yangchen-gu, Seoul, Korea	+82-2-6346-0512	+82-2-6346-0513
Shibaura Electronics Hong Kong Co., Ltd.	Room 801, 8/F., Grand City Plaza, 1-17 Sai Lau Kok Road, Tsuen Wan, N.T., Hong Kong	+852-2377-1678	+852-2376-3361
Shibaura Electronics Europe GmbH	Trimburgstrasse 2, 81249 Munich, Germany	+49-89-8403-9034	+49-89-8946-0749
Shibaura Electronics of America Corporation	39555 Orchard Hill Place, Suite 435, Novi, MI 48375, USA	+1-248-504-6090	+1-248-939-8055

http://www.shibaura-e.co.jp

() SHIBAURA ELECTRONICS CO., LTD.

0	2	

Thermistor sensors in your daily lives

What is a Thermistor? Get the answer from our well-experienced professionals

Physical Properties of Thermistors 05
Resistance06
B constant07
Thermal Dissipation Constant08
Thermal Time Constant09
Current - Voltage (I-V)
Characteristics10
Temperature Coefficient
of Resistance α 11
Insulation Resistance12

#1 Global Brand Shibaura's Standard Product Lineup **Thermistor Elements**

PSB Thermistors 14
Resistance - Temperature
Characteristics Table 15
Concept of Resistance - Temperature (R-T)
Characteristics Table 16
Specifications for Durability 17
Model Names and
Thermistor Element Lineup 18

STANDARD

PSB-S1 thermistor 2	20
PSB-S2 thermistor 2	21
PSB-S3 thermistor 2	22
PSB-N thermistor 2	23

COMPACT

PSB-S5 thermistor 24	
PSB-S7 thermistor 25	
PSB-S9 thermistor 26	

ADVANCED
NSII-E1 thermistor 27
NSII-E3 thermistor 28
NSIII-U1 thermistor 29

```
ΡL
PL thermistor -----
                      - 30
PL2 thermistor ----- 30
```

PL3 thermistor ----- 30

RB1	
S1 thermistor	31
S3 thermistor	31

KG2 thermistor ----- 32

N thermistor ----

----- 31

#1 Global Brand Shibaura's Standard Product Lineup Thermistor Sensors

Thermistor Sensors -Standard Product Lineup -- 36

For automobiles	
MP1	38
CS1	38
MP3	39

Non-co RDS1 ----- 40 NIP1-----40

Soft contact TSP1--

--- 41

Water temperature WT1------- 42 WT2-------- 42 WT3------ 43 ----- 43 WT4-----WT5----43

Liquid temperature	Equipped wit a resin prote
	CE1
Hermetic	CE2
HT1 44	CC1
	CC2

Equipped with a threaded tube	
NTN145	
MPM145	

Equipped with a flange
OCK1-146
OCK2-146
ОСКЗ47
ST147

Equipped with a copper protection tube
EP1 48
KTM1 48

Resin dipped	
EE1 49	
KT1 49	

58

Sensing parts for standard products Wires for standard products

59

Custom-designed sensors

QMS, EMS, IATF 16949 Manufacturing sites

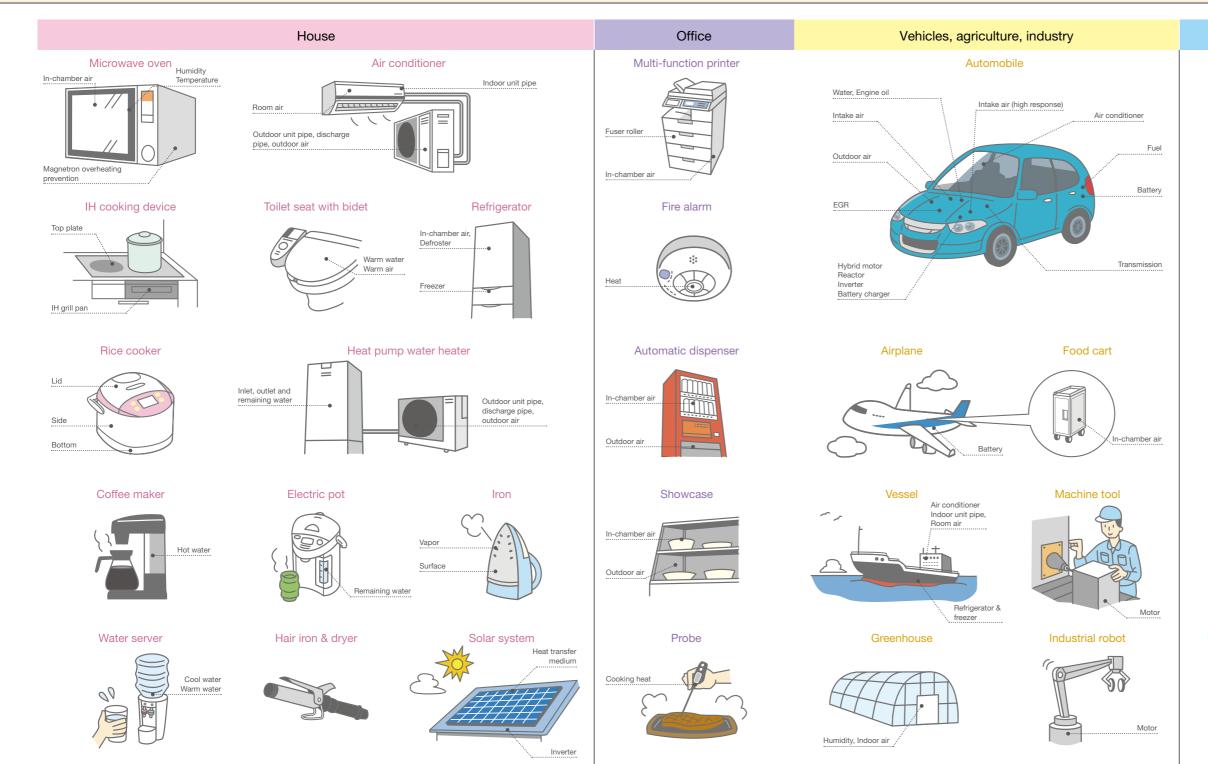
6'

Directions

Shibaura thermistor elements in full scale

Thermistor sensors	
in your daily lives	
What is a Thermistor?	_
what is a mermistor:	
	_
Thermistor Elements	
The survey is the survey of the survey	
Thermistor Sensors	
	_
Sensing parts for	
standard products	
standard products	
	_
Wires for standard	
products	
	_
Custom-designed	
sensors	
QMS, EMS, IATF 16949	
Manufacturing sites	
	_
Directions	
Chihoura thermister	
Shibaura thermistor	
Shibaura thermistor elements in full scale	

 50
 50
 51
 51


Equipped with a lug terminal
RTZ1 52
RT1 52
RT2 53
EP253
KTEP1 53

Surface temperature
KN1 54
KN2 54
KN3 55
KN4 55

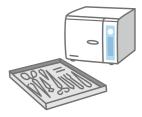
Absolute humidity sensors
SP1 56
SPD1 57

Hospital

Thermometer

Dialyzer

Bathtub


Incubator

Drug formulation machine

Sterilizer

Automatic analyzer

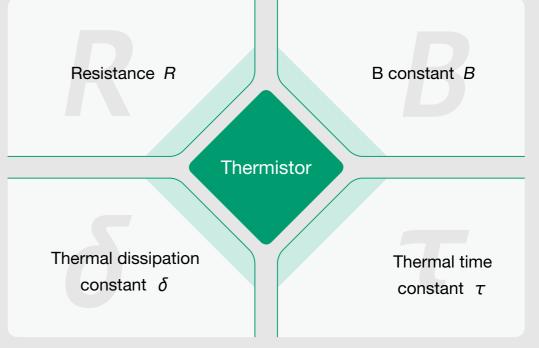
Catheter

What is a Thermistor?

Get the answer from our well-experienced professionals

The King of Temperature Sensors with a Negative Temperature Coefficient

• A thermistor is a thermally sensitive element composed of semiconductive fine ceramics


The name thermistor comes from "a thermally sensitive resistor," and its resistance drastically changes with temperature. The resistance of ordinary materials rises slightly as temperature rises, whereas NTC (negative temperature coefficient) thermistors exhibit a sharp decrease in resistance. Thermistors manufactured and supplied by Shibaura are all NTC thermistors. The following descriptions are applicable only to NTC thermistors. Thermistors are made from several transition metal oxides, primarily of Mn, Ni and Co, sintered into a fine ceramic body.

Shibaura's thermistors cover a full range of temperatures from -50 to +500°C that is required for daily temperature control. Our compact, stable and highly sensitive thermistors are used in large quantities as temperature sensors and for temperature compensation in many fields such as home appliances and industrial equipment.

Physical Properties of Thermistors

• Four constants that determine the characteristics of a thermistor

The characteristics of a thermistor is basically determined by four constants; resistance R, B constant B, thermal dissipation constant δ , and thermal time constant τ .

In addition to the above four constants, "current - voltage characteristics" and "temperature coefficient of resistance" may also be used as supplementary factors.

You can find the details about the properties of thermistors on the following pages

Resistance

The resistance of a thermistor is defined in the standard JIS C 5602 as follows:

"The DC resistance value of a thermistor when measured at a specified temperature with sufficiently low power dissipation where its resistance change due to self-heating is negligible as compared to the overall error in measurements."

Shibaura measures the resistance of thermistors using standardized current values and in-house developed high precision thermostatic baths.

Shibaura's thermistors are all NTC thermistors and their resistance lowers as temperature rises.

The relationship between resistance R and absolute temperature T can be approximated by the following equation.

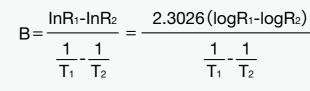
R₁ = R₂ exp B
$$(\frac{1}{T_1} - \frac{1}{T_2})$$

 R_1 : resistance (Ω) at absolute temperature T_1 (K) R_2 : resistance(Ω) at absolute temperature T_2 (K) B : B constant (K)

For a desirable circuit design, it is recommended to select a thermistor that exhibits the resistance within a range from 100Ω to $100k\Omega$ for a usage temperature range. Shibaura offers a variety of options to be selected for your specific thermistors.

The resistance can be varied by changing the size of a thermistor chip.

We are ready to customize any of our products in order to fulfill your demands.


B Constant

The B constant expresses a degree of thermistor sensitivity (change rate of its resistance) to temperature changes.

The change rate can also be expressed by the gradient of a line.

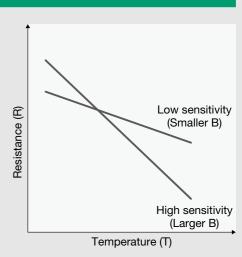
The larger the gradient, the higher the sensitivity.

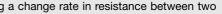
The B constant is derived from the following equation using a change rate in resistance between two given temperatures.

The B constant, unlike the resistance, cannot be varied by changing the chip size, but is determined by the material composition of a thermistor chip.

Additionally, in general, the larger the B constant, the higher the resistance of a thermistor will be. Therefore, the combination of resistance and B value has a limitation.

It is, for example, very difficult to create a thermistor which has a very high resistance and a very small B value.


Shibaura has a vast array of combinations of resistances and B values, and only a part of them are listed in this catalogue.

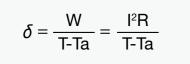

We also support you with creating an original B value.

Here is an example of a B value (B0/100) calculation.

B=	InR₁	-InR ₂		In162.	2-In3.3
	1	1	=	1	1
	T 1	T ₂		273.15	373.1

B: B constant (K)
R1: resistance (Ω) at absolute
temperature T1 (K)
R_2 : resistance (Ω) at absolute
temperature T2 (K)

- = 3969.9 ≒ 3970


15

R₁ : resistance at $0^{\circ}C = 162.2k\Omega$ R_2 : resistance at 100°C = $3.3k\Omega$ T₁ : 0°C + 273.15 = 273.15K T₂: 100°C + 273.15 = 373.15K

Thermal Dissipation Constant

The thermal dissipation constant δ indicates the amount of power required for a thermistor to heat itself up by 1°C when it is energized in still air (mW/ °C).

When a power W is applied to the thermistor at an ambient temperature Ta and the temperature of the thermistor finally reaches a temperature T, the following equation is established.

 δ : thermal dissipation constant (mW/°C)

W : power consumption in a thermistor(mW)

T : temperature at heat equilibrium (°C)

Ta : ambient temperature (°C)

I : current flowing in a thermistor at temperature T(mA)

R : resistance of a thermistor at temperature $T(k\Omega)$

Applying a power equivalent to the thermal dissipation constant makes a thermistor heat itself up by 1°C. This causes an error between the measured and the actual ambient temperatures. Therefore, it is necessary to design circuitry to minimize the power to be applied so that

measurement errors caused by thermistor's self-heating are eliminated.

The thermal dissipation constant δ is determined by a balance between "self-heating" and "heat dissipation." As a result, it varies substantially depending on the thermistor's surroundings.

Placing materials that have a high thermal conductivity around the thermistor promotes heat release and increases the constant δ .

On the contrary, the construction allowing heat to accumulate decreases it. Therefore, it is essential to select appropriate materials in assembling your thermistor.

It is also important, after assembling your thermistor, to measure the constant δ in its operation environment (air, water, oil, hot plate etc.) to see that the constant meets your requirement.

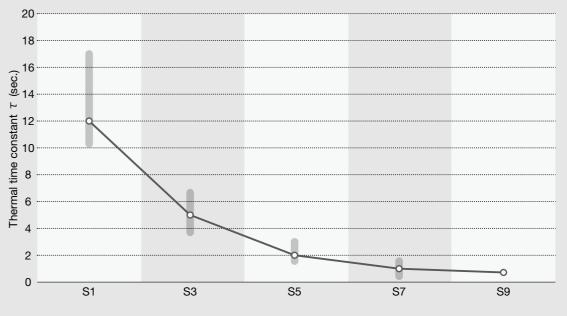
Thermal Time Constant

The thermal time constant indicates a time required for a thermistor to respond to a change in its ambient temperature.

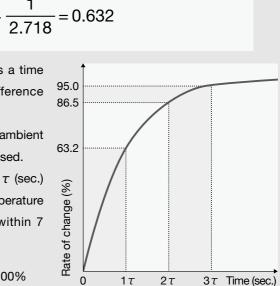
When the ambient temperature is changed from T₁ to T₂, the relationship between the time elapsed during the temperature change t (sec.) and the thermistor temperature T can be expressed by the following equation.

$$T = (T_2 - T_1) (1 - exp(-t_1))$$

au (sec.) in the equation denotes the thermal time constant. Now, assuming t and τ are equal ($t = \tau$), the equation can be expressed as follows.


$$T = (T_2 - T_1) (1 - e^{-1}) + T_1$$
$$\frac{T - T_1}{T_2 - T_1} = 1 - e^{-1} = 1 - \frac{1}{2.718} = 0.$$

This shows that the constant au (sec.) is defined as a time for the thermistor to reach 63.2% of the total difference between its initial and final body temperatures.


The thermistor body temperature does not reach its ambient temperature when a time period defined by τ is elapsed. The temperature change rate at *n* times the constant τ (sec.) is as follows, showing that the thermistor body temperature reaches its ambient temperature approximately within 7 times the constant.

 $\tau = 63.2\%$ $2\tau = 86.5\%$ $3\tau = 95.0\%$ \cdots $7\tau = 100\%$

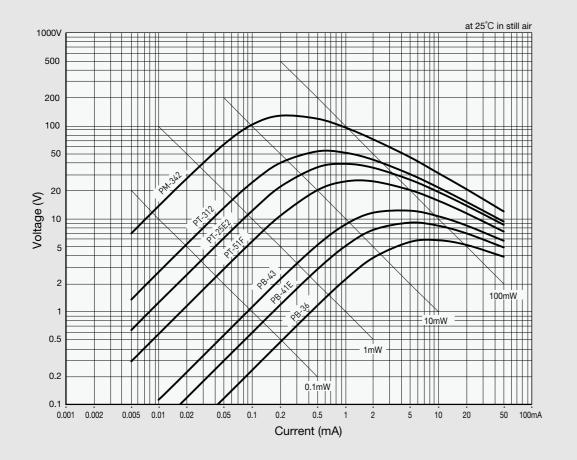
Generally, the smaller the size of the thermistor, the faster the thermal response, and thus the smaller the constant τ will be. The constant varies significantly depending on thermistor assemblies. It is necessary to select materials having a high thermal conductivity considering the environment where the thermistor is used.

$$(\tau) + T_1$$

Current - Voltage (I-V) Characteristics

The current - voltage characteristics describes the voltage change as the current flow through a thermistor varies.

I-V curves of NTC thermistors are characterized in that the voltage rises linearly as the current rises. However, the voltage begins to decrease after achieving its peak at a certain current value.


A thermistor begins self-heating when a current is applied, and the amount of heat generated by the thermistor becomes larger as that of current flow increases.

While the heat generation is small, the heat release from the surface and lead wires of the thermistor is large. Thus, the thermistor body temperature will not change and so too its resistance. The current and voltage are directly proportional to each other according to Ohm's Law.

However, once the amount of heat generation becomes larger than that of heat release, the thermistor body temperature rises, its resistance lowers, and the proportional relationship between current and voltage is lost. Then the voltage gradually decreases after achieving its peak at a certain point.

The chart below shows the I-V characteristics of different thermistor elements. It is important to use a thermistor within the range where a line is straight and self-heating has little effect on the resistance.

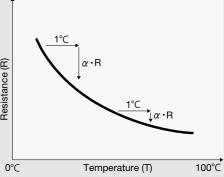
Using voltages over the peaks shown on the chart may bring the thermistors into "a runaway mode" where they glow and break down in a short time. Particular attention should be given to voltages that will be applied.

Temperature Coefficient of Resistance α

The temperature coefficient of a thermistor denotes the rate of change of thermistor resistance per 1°C and is commonly expressed in %/°C. The coefficient α is defined by $\alpha = \frac{1}{R} \cdot \frac{dR}{dT}$. Here, the equation given in page 6 is differentiated for temperature T and substituted into the above equation. Then the following equation is obtained.

$$\alpha = \frac{1}{R} \cdot \frac{dR}{dT} \times 100 = -\frac{B}{T^2} \times 100$$

 α : temperature coefficient of resistance (%/°C) R : resistance (Ω) at absolute temperature T(K) B : B constant (K)



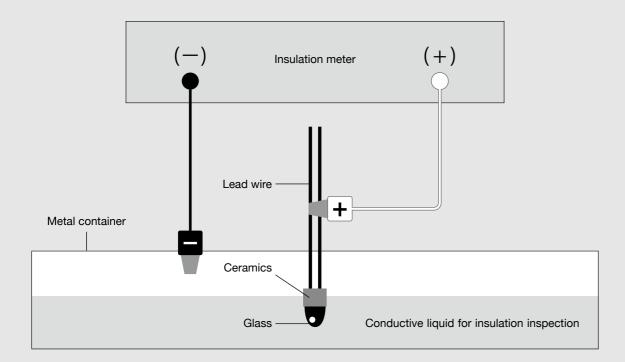
The coefficient α of a thermistor with its B = 3400K and T = 293.15K (20°C), for example, can be determined as follows.

$$\alpha = \frac{-3400}{(273.15 + 20)}$$
$$\alpha = -4\% / ^{\circ}C$$

The negative sign of the coefficient α indicates that the thermistor resistance decreases with increasing temperature.

Metals and alloys, in general, raise their resistance as temperature rises. Their temperature coefficients of resistance, for example, are 0.4%/°C (gold), 0.39%/°C (platinum), and iron and nickel are relatively larger with 0.66%/°C and 0.67%/°C, respectively. Thermistors, as compared with these metals, vary their resistance significantly with a small temperature change. Therefore, thermistors are suitable for precise temperature measurements and controlling the temperature by using slight differences in temperature.

Insulation Resistance


The insulation resistance of a thermistor element is measured between its lead wires and glass.

It is essential that a thermistor provides good electrical insulation to secure its durability. Shibaura carries out 100% inspection on all products (except PSB-N, RB1-N and KG) by measuring the insulation resistance of each element in manufacturing processes.

The figure below shows the measuring method.

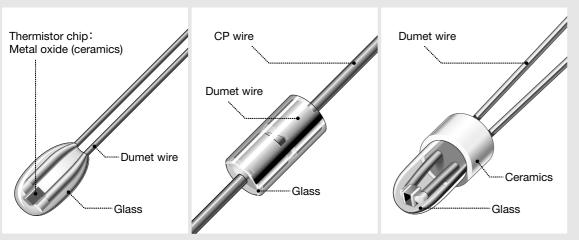
A metal container is filled with conductive liquid. A thermistor is immersed in the liquid in such a way that its glass is submerged below the liquid surface. (For NS elements, the liquid level is on the ceramics.)

The positive pole of the insulation meter is connected to the thermistor lead wires, and the negative pole to the metal container, and the resistance between the lead wires and glass is measured.

#1 Global Brand Shibaura's Standard Product Lineup **Thermistor Elements**

Note) Unless otherwise stated, all thermal time constants and dissipation constants are measured in still air.

PSB Thermistors


The ultimate thermistors with proven results, patented in eight major countries

PSB thermistors were invented and patented in eight major countries (Japan, the U.S., the U.K., Germany, France, Canada, Italy and Switzerland). They are the most appreciated and the most-used thermistors for temperature measurements and compensations.

Many outstanding features

- Lead wires are bonded to a thermistor chip via gold electrodes (PSB-S, NS).
- Highly stable with a thermistor chip made of fine ceramics.
- Excellent heat and weather proof provided by glass-encapsulation.
- Little variation in shape and characteristics due to automated production.
- Micro thermistors with an excellent thermal response are available.
- High-volume supply in high quality by integrated automatic production.

Structure

Thermistor material properties

ltem	Chip	Glass coat	Lead wire	Ceramics
Material	Mn, Ni, Co oxides	Glass	Dumet wire	MgO•SiO ₂
Young's modulus (GPa)	150	50	150	150
Poisson's ratio	0.25	0.26	0.33	0.24
Thermal expansion coefficient (25 to 400°C)	90 × 10 ⁻⁷	91 × 10 ⁻⁷	88 × 10 ⁻⁷	97× 10 ⁻⁷
Thermal conductivity (W/m•K)	10	0.7	150	5.0
Specific heat (J/kg•K)	200	900	400	800
Density (g/cm ³)	5.0	4.3	8.5	3.0
				Note) Typical values.

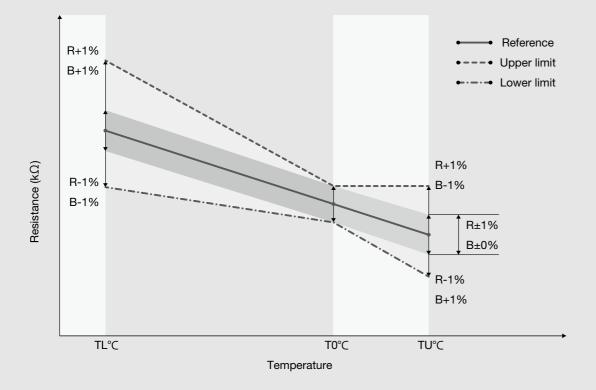
Resistance - Temperature Characteristics Table You can directly find the resistance value at your desired temperature

The table below shows the resistance - temperature (R-T) characteristics of the PSB thermistors. Figures in the parentheses () are the nominal resistances at the reference temperatures. PSB thermistor standard resistance - temperature characteristics table

pecification 325°C/85°C	P□□-35G 3529K	P□□-36 3420K	P□□-42H 3435K	P□□-43 3480K	P□□-51F 3992K	P□□-25E2 4066K	PDD-312	P□□-342 4557K	P□□-:
°C *	3529K 3500K ⁽¹⁾	3420K 3390K ⁽¹⁾	3435K 3406K ⁽¹⁾	3480K 3450K ⁽¹⁾	3992K 3970K ⁽¹⁾	4066K 4300K ⁽²⁾	4240K 4537K ⁽²⁾	4007K 5133K ⁽³⁾	- 2240
-50	81.20	77.58	364.0	408.0	007010	430010	400710	31331	205.0
-45	59.66	57.69	269.8	301.4					165.5
-40	44.31	43.34	202.2	225.1					134.8
-40	33.24	32.87	153.0	169.8					110.7
-30	25.18	25.17	116.8	129.3					91.6
-25	19.25	19.43	90.05	99.32	657.4	1317			76.3
-20	14.85	15.13	69.99	76.96	487.4	980.5			64.1
-15	11.55	11.88	54.84	60.13	365.0	736.8			54.1
-10	9.051	9.392	43.30	47.34	276.1	558.6			46.0
-5	7.149	7.481	34.44	37.55	210.7	427.2			39.4
0	5.688	(6.000)	27.59	(30.00)	162.2	329.4	806.5		33.8
5	4.557	4.844	22.25	24.13	125.8	255.0	618.9		29.2
10	3.675	3.935	18.05	19.53	98.32	198.9	478.8		25.4
15	2.982	3.217	14.74	15.91	77.45	156.3	373.1		22.2
20	2.435	2.644	12.11	13.03	61.47	123.8	292.9		19.4
25	(2.000)	2.186	(10.00)	10.74	49.12	98.63	231.4	1388	17.1
30	1.652	1.817	8.304	8.896	39.52	79.13	184.1	1085	15.1
35	1.372	1.518	6.931	7.409	32.00	63.87	147.4	853.9	13.4
40	1.145	1.274	5.814	6.201	26.06	51.87	118.7	676.5	11.9
45	0.9602	1.075	4.900	5.215	21.36	42.36	96.13	539.3	10.6
50	0.8092	0.9106	4.149	4.406	17.60	34.79	78.29	432.5	9.9
55	0.6851	0.7749	3.529	3.739	14.58	28.72	64.10	348.9	8.6
60	0.5826	0.6622	3.014	3.186	12.14	23.83	52.76	283.0	7.
65	0.4976	0.5683	2.584	2.727	10.16	19.87	43.63	230.8	7.0
70	0.4267	0.4895	2.225	2.343	8.541	16.64	36.26	189.2	6.3
75	0.3673	0.4233	1.923	2.021	7.214	14.00	30.27	155.9	5.8
80	0.3175	0.3674	1.667	1.749	6.120	11.83	25.38	129.0	5.2
	0.2754	0.3200			5.213	10.04			4.8
85			1.451	1.520			21.37	107.3	
90	0.2397	0.2796	1.268	1.325	4.459	8.556	18.06	89.57	4.4
95	0.2094	0.2452	1.111	1.159	3.829	7.318	15.33	75.12	4.0
100	0.1835	0.2156	0.9763	1.017	(3.300)	6.282	13.06	63.26	3.7
105	0.1613	0.1902	0.8608	0.8947	2.854	5.412	11.17	53.48	3.4
110	0.1423	0.1683	0.7612	0.7898	2.478	4.679	9.585	45.38	3.1
115	0.1259	0.1494	0.6751	0.6992	2.158	4.059	8.254	38.65	2.9
120	0.1117	0.1330	0.6004	0.6208	1.886	3.532	7.131	33.04	2.7
125	0.0994	0.1186	0.5354	0.5527	1.653	3.083	6.181	28.34	2.5
130	0.0886	0.1061	0.4787	0.4933	1.453	2.700	5.374	24.39	2.3
135	0.0793	0.0952	0.4290	0.4414	1.281	2.371	4.686	21.05	2.2
140	0.0711	0.0856	0.3855	0.3960	1.133	2.088	4.098	18.23	2.0
145	0.0639	0.0772	0.3472	0.3561	1.004	1.844	3.594	15.84	1.9
150	0.0576	0.0697	0.3134	0.3209	0.8928	1.632	3.161	13.80	1.8
155	0.0520	0.0631	0.2836	0.2899	0.7957	1.449	2.787	12.05	1.6
160	0.0471	0.0573	0.2571	0.2625	0.7109	1.289	2.464	10.56	1.6
165	0.0427	0.0521	0.2336	0.2381	0.6367	1.150	2.184	9.272	1.4
170	0.0389	0.0475	0.2127	0.2165	0.5716	1.028	1.940	8.164	1.4
175	0.0354	0.0433	0.1940	0.1972	0.5142	0.9217	1.728	7.207	1.4
180	0.0354	0.0396	0.1940	0.1972	0.5142	0.8278	1.726	6.377	1.2
									1.2
185	0.0296	0.0363	0.1624	0.1646	0.4190	0.7451	1.379	5.656	
190	0.0271	0.0334	0.1490	0.1508	0.3793	0.6720	1.237	5.028	1.
195	0.0249	0.0307	0.1369	0.1384	0.3442	0.6074	1.111	4.480	1.0
200	0.0229	0.0283	0.1261	0.1272	0.3128	(0.5500)	(1.000)	(4.000)	(1.
205					0.2849	0.4990	0.9020	3.579	0.
210					0.2600	0.4536	0.8151	3.209	0.
215					0.2376	0.4130	0.7380	2.882	0.
220					0.2176	0.3768	0.6694	2.594	0.
225					0.1995	0.3443	0.6083	2.340	0.
230					0.1833	0.3151	0.5537	2.114	0.
235					0.1686	0.2889	0.5049	1.913	0.
240					0.1554	0.2653	0.4611	1.734	0.
245					0.1434	0.2440	0.4218	1.575	0.
250					0.1326	0.2247	0.3865	1.432	0.
255					0.1227	0.2072	0.3547	1.305	0.
255					0.1227	0.1914	0.3547	1.191	0.
265					0.1056	0.1771	0.3000	1.088	0.
270					0.0981	0.1640	0.2765	0.9958	0.
275					0.0913	0.1521	0.2552	0.9127	0.
280					0.0851	0.1413	0.2358	0.8377	0.
285					0.0793	0.1313	0.2182	0.7700	0.
290					0.0741	0.1223	0.2022	0.7086	0.4
295					0.0693	0.1140	0.1876	0.6531	0.4
					0.0649	0.1064	0.1743	0.6026	0.

Measuring temperatures of B constants: (1) 0°C/100°C (2) 100°C/200°C (3) 200°C/300°C (4) 25°C/50°C Note) Please refer to page 16, "Concept of resistance - temperature characteristics table

Concept of Resistance - Temperature (R-T) Characteristics Table


The resistance of thermistors varies not linearly with temperature but shows a curve with increasing temperature. Shibaura calculates the values in the R-T characteristics table using the following expression.

$$R = R_0 \exp \left[B\left(\frac{1}{T} - \frac{1}{T_0}\right) + C \ln \frac{T_0}{T} + D\left(\ln \frac{T_0}{T}\right)^2 \right]$$

Ro: nominal resistance (kΩ) To: reference temperature (K) B, C, D: constants specific to the thermistor

The nominal resistance R_0 and the B constant value have tolerances, respectively. The resistance variation is affected by the B constant. As the difference between a given temperature and the reference temperature becomes larger, the resistance variation becomes larger. The illustration below shows the width of resistance variation in relation to temperature when the

tolerance of the resistance and the B constant is set to $\pm 1\%$.

Our R-T characteristics table is made based on the concept described above.

Specifications for Durability

Shibaura's PSB thermistors, regardless of their shapes or specific characteristics, meet the durability specifications given below.

1 Temperature cycle test

Condition: 500 cycles (see chart 1)

Criteria: Resistance drift rate shall be within $\pm 2.0\%$, no abnormalities in appearance and shape after testing.

2 Thermal shock test

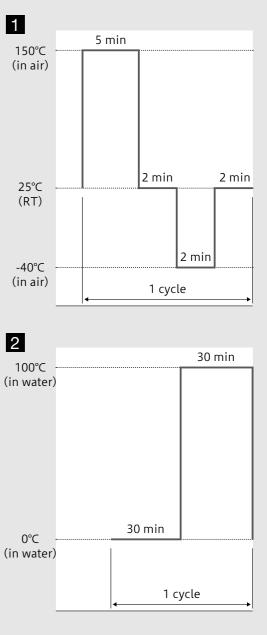
Condition: 5 cycles (see chart 2) Criteria: Resistance drift rate within ±1.0%, no abnormalities in appearance and shape after testing.

3 High temperature storage test

Condition: 150 ±5°C for 1000 hours, then at room temperature for 1 hour Criteria: Resistance drift rate within ±2.0%.

4 Damp heat test

Condition: 80 ±2°C, 90 to 95%RH for 1000 hours, then at room temperature for 2 hours Criteria: Resistance drift rate within ±1.0%.


5 High temperature load test

Condition: 150 ±5°C and energized with 50µA for 1000 hours, then at room temperature for 1 hour Criteria: Resistance drift rate within ±2.0%.

6 Low temperature storage test

Condition: -40 ±2°C for 1000 hours, then at room temperature for 1 hour

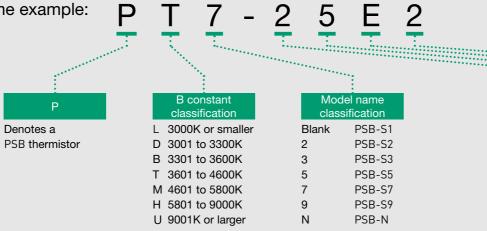
Criteria: Resistance drift rate within ±1.0%, no abnormalities in appearance and shape after testing.

Model Names and Thermistor Element Lineup

The PSB product names show the specific characteristics of the thermistors

The PSB thermistors have a model name classified by the shape of the thermistor and a product name

that is mainly classified by the characteristics of the thermistor.

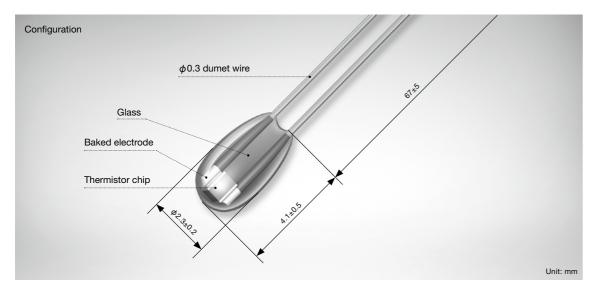

A product name also indicates the model of that product.

Thermistor element lineup

																		Unit: mm				
Category		STANDARD			СОМРАСТ			ADVANCED				PL			RB1			KG				
Model name	PSB-S1	PSB-S2	PSB-S3	PSB-N	PSB-S5	PSB-S7	PSB-S9	NS II -E1	NS <u>I</u> I -E3	NSⅢ-U1	PL	PL2	PL3	S1	S3	Ν	KG2	KG3				
Operating temperature		-50 to	-50 to +300°C -50 to +250°C			50 to +300°C			C	-50 to +120°C			-50 to +200°C									
Max. operating temperature	-			-				300°	300°C 500°C			-			-			-				
Thermal time constant	Approx. 12 sec.	Approx. 9 sec.	Approx. 5 sec.	Approx. 12 sec.	Approx. 2 sec.	Approx. 1 sec.	Approx. 0.6 sec.	Approx. 18 sec.	Approx. 10 sec.	Approx. 18 sec.	Approx. 12 sec.	Approx. 8 sec.	Approx. 5 sec.	Approx. 12 sec.	Approx. 5 sec.	Approx. 12 sec.	Approx. 5 sec.	Approx. 10 sec.				
Dissipation constant	Approx. 1.3mW/°C	Approx. 1.0mW/°C	Approx. 0.75mW/°C	Approx. 2.3mW/°C	Approx. 0.4mW/°C	Approx. 0.25mW/°C	Approx. 0.15mW/°C	Approx. 1.5mW/°C	Approx. 1.2mW/°C	Approx. 1.5mW/°C	Approx. 1.3mW/°C	Approx. 0.9mW/°C	Approx. 0.75mW/°C	Approx. 1.3mW/°C	Approx. 0.75mW/°C	Approx. 2.3mW/°C	Approx. 1.3mW/°C	Approx. 1.4mW/°C				
Insulation resistance	DC500V 50MΩ	DC50V DC500V 10MΩ 100MΩ						DC50V 10MΩ		DC500V 100MΩ			DC500V 50MΩ	DC50V 10MΩ				DC500V 50MΩ	DC50V 10MΩ	DC500V 100MΩ		-
Glass dimensions	φ2.3±0.2 L4.1±0.5	φ1.6±0.2 L2.7±0.4	φ1.3±0.2 L2.2±0.4	φ1.8±0.2 L3.7±0.4	φ0.8±0.1 L1.4±0.4	φ0.55±0.1 L1.1±0.3	φ0.43±0.1 L0.8±0.3	φ2.1±0.2 L4.0±0.3	φ1.2±0.2 L2.0±0.3	φ2.3±0.3 L2.8±0.3	φ2.3±0.2 L4.1±0.5	φ1.6±0.2 L2.7±0.4	φ1.3±0.2 L2.2±0.4	φ2.3±0.2 L4.1±0.5	φ1.3±0.2 L2.2±0.4	φ1.8±0.2 L3.7±0.4	□1.2±0.1 L1.4±0.1	□1.65±0.1 L2.3±0.1				
Lead wire diameter	0.30	0.25	0.20	0.50	0.15	0.10	0.07	0.35	0.20	0.35	0.30	0.25	0.20	0.30	0.20	0.50		-				
Ceramics dimensions		-			-			φ2.2±0.2 φ1.5±0.2 φ2.2±0.2 L1.5±0.2 L3.0±0.2 L1.5±0.2				-			-							
Page	P.20	P.21	P.22	P.23	P.24	P.25	P.26	P.27	P.28	P.29		P.30			P.31		P.32	P.33				

Format of PSB thermistor product name

Product name example:

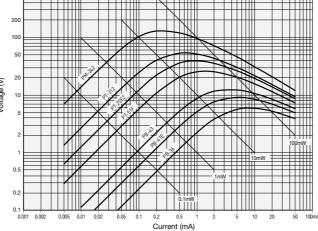

			Re	sistance	value index	
Exponent part of the resistance value X	Integer part of the resistance value	•	of the tance		rature of istance	10
X10 [×] Ω		A B C D I	0.1 0.2 0.3 0.4 : 0.9	2 Blank	200°C 0°C	2
		Blan	k 0			

 $0^{2} \times 5.5\Omega$ at 200°C ↓ ↓ 5 E 2

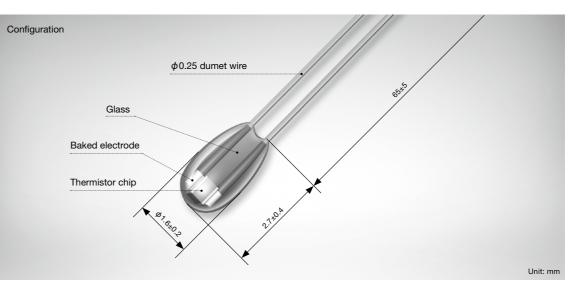
19

STANDARD

PSB-S1 thermistor

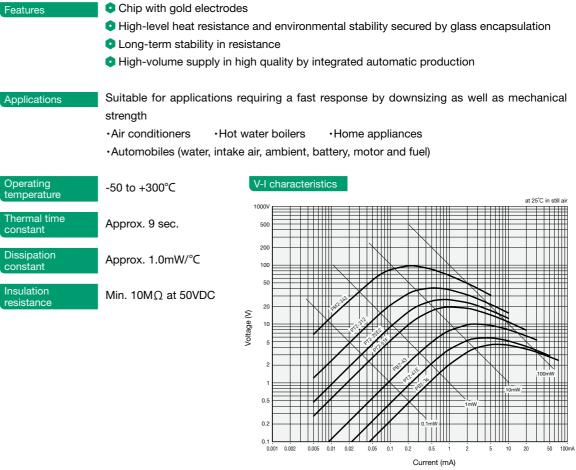

The standard product in PSB thermistors

With proven results in automotive, home appliances and other fields for more than 30 years, the PSB-S1 is universally recognized as the most reliable thermistor. The PSB-S1 accounts for Shibaura's largest production volume and is a practical global standard for all glass-encapsulated thermistors.

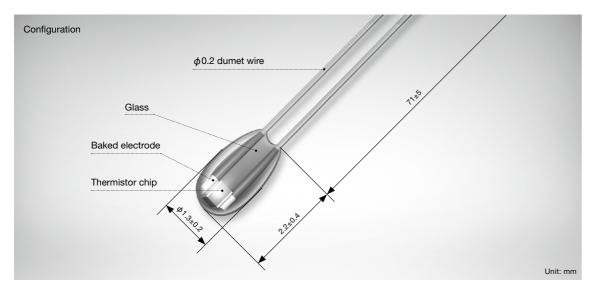

Features	 Chip with gold electrodes High-level heat resistance and environmental stability secured by glass encapsulation Long-term stability in resistance High-volume supply in high quality by integrated automatic production Patented in 8 major countries (Japan, the U.S., Canada, France, the U.K., Germany, Italy and Switzerland)
Applications	For equipment that requires high reliability in temperature measurement and control in addition to the following equipment •Air conditioners •Hot water boilers •Home appliances •Automobiles (water, intake air, ambient, battery, motor and fuel)
Operating temperature	-50 to +300°C V-I characteristics
Thermal time constant	Approx. 12 sec.
Dissipation constant	Approx. 1.3mW/°C

Min. 50MΩ at 500VDC

Insulation resistance



PSB-S2 thermistor

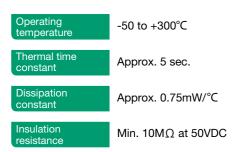

If you need both improved response and mechanical strength

The answer is PSB-S2. It is downsized and 1.5 times faster in response than the PSB-S1. Its ϕ 0.25mm dumet wires make the handling of the product easier during processing.

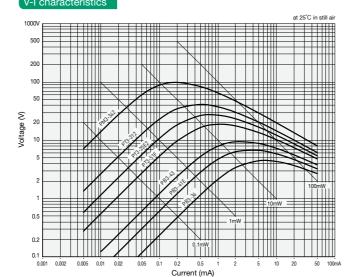
STANDARD

PSB-S3 thermistor

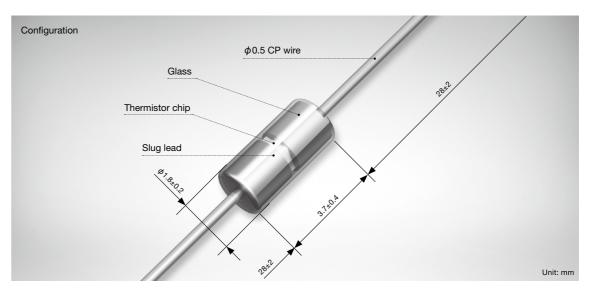
If you need thermistors for a faster response


The PSB-S3 has been developed as a standard high response element exhibiting approximately a two times faster response than the PSB-S1 at reasonable cost.

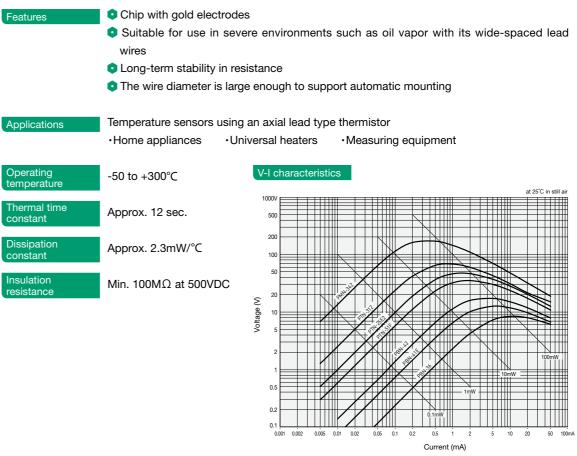
		0	Chip	with	gold	electrod	les
--	--	---	------	------	------	----------	-----


• High-level heat resistance and environmental stability secured by glass encapsulation

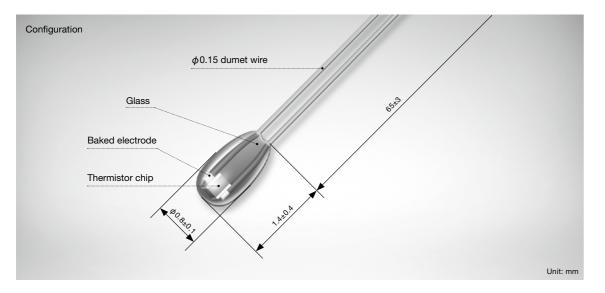
- Long-term stability in resistance
- High-volume supply in high quality by integrated automatic production
- Patented in 8 major countries (Japan, the U.S., Canada, France, the U.K., Germany, Italy and Switzerland)


Suitable for equipment requiring a faster response Applications ·Home appliances ·Automobiles (air mass flow, T-MAPS) HV/EV motors ·Electronic thermometers

Features



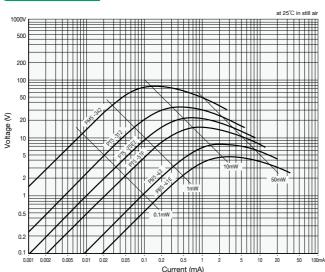
PSB-N thermistor


DHD (Double Heatsink Diode) type

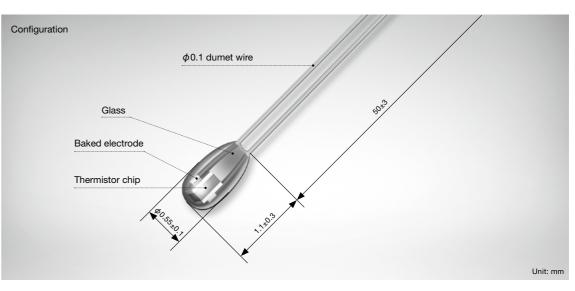
A PSB-S thermistor is sealed in a DHD form. It is an axial lead type with wires coming out of both ends of the thermistor element. Heat resistance is provided by glass encapsulation. Wide-spaced lead wires contribute to lower possibilities in measurement error caused by leakage even with a high resistance thermistor chip. This enables PSB-N thermistors to be used in harsh environments such as in oil smoke, dust or humidity.

COMPACT

PSB-S5 thermistor

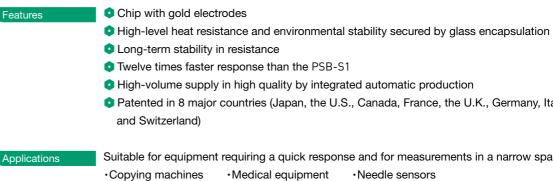


If you need thermistors for a quick response

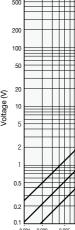

The PSB-S5 is only available from Shibaura since it was first introduced as the most compact glassencapsulated thermistor manufactured on an automated mass production line. With its compact design and ϕ 0.15mm dumet wires, the PSB-S5 comes into wider use including the automotive field where vibration resistance is required.

Features	 Chip with gold electrodes High-level heat resistance and environmental stability secured by glass encapsulation Long-term stability in resistance Six times faster in response than the PSB-S1 High-volume supply in high quality by integrated automatic production Patented in 8 major countries (Japan, the U.S., Canada, France, the U.K., Germany, Italy and Switzerland)
Applications	Suitable for equipment requiring a quick response and for measurements in a narrow space •Energy-saving and green-oriented automobiles (air mass flow, T-MAPS, HV/EV motors) •Fusers for copying machines
Operating temperature	-50 to +250°C

Approx. 2 sec. onstant Dissipatior Approx. 0.4mW/°C nsulatior Min. $10M\Omega$ at 50VDC

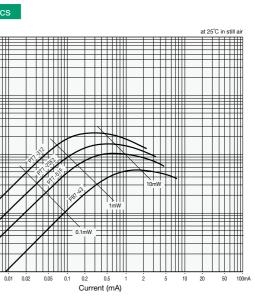


PSB-S7 thermistor

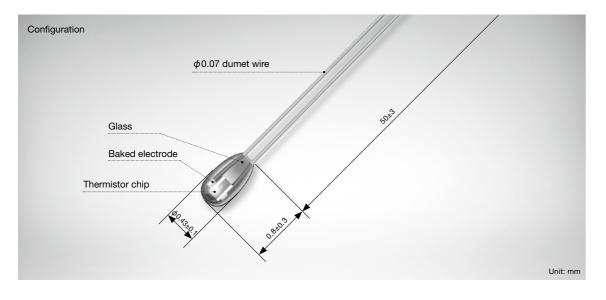


A micro-sized thermistor with a very fast response

Suitable for sensors that are placed in thin needle tips or on uneven surfaces. The PSB-S7 has both microsize and durability that have never before been achieved by resin thermistors.



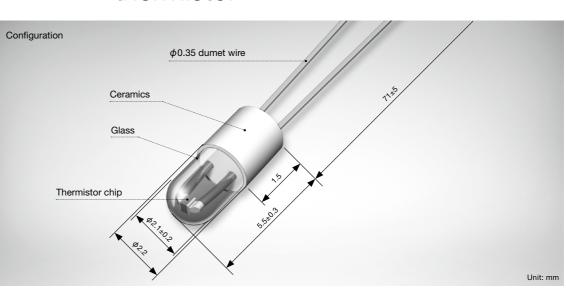
/-I characte


Patented in 8 major countries (Japan, the U.S., Canada, France, the U.K., Germany, Italy

Suitable for equipment requiring a quick response and for measurements in a narrow space Needle sensors

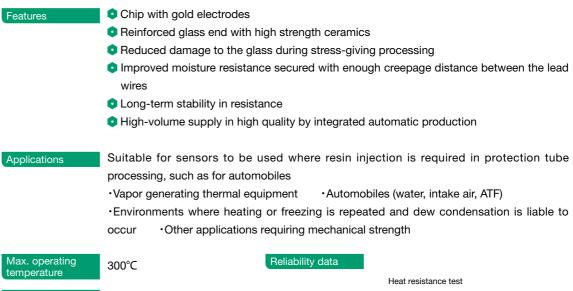
COMPACT

PSB-S9 thermistor


A micro-miniature thermistor with a super-fast response

With an external size of ϕ 0.43mm, the PSB-S9 is the most compact glass-encapsulated thermistor in the world that can be mass produced. Compared to the PSB-S7, the PSB-S9 has 50% the volume and two times faster in response. It was developed for sensors requiring a very fast response, microsize and high reliability. The PSB-S9 is used for office equipment such as printers and copying machines that require a fast response. It is also used in non-contact sensors and further, such as medical equipment, where micro-miniature sensors are requried.

Features	 The most compact glass-encapsulated thermistor Chip with gold electrodes High-level heat resistance and environmental stability secured by glass encapsulation Long-term stability in resistance High-volume supply in high quality by integrated automatic production
Applications	Suitable for medical and other equipment requiring a super-fast response, and also for test equipment for designing thermal components •Medical catheters •Non-contact sensors •Test equipment requiring accurate measurements
Operating temperature	-50 to +250°C V-I characteristics
Thermal time constant	Approx. 0.6 sec.
Dissipation constant	Approx. 0.15mW/°C
Insulation resistance	Min. 10MΩ at 50VDC

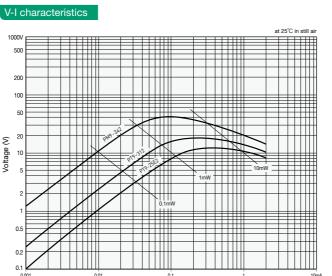

ADVANCED

NS II - E1 thermistor

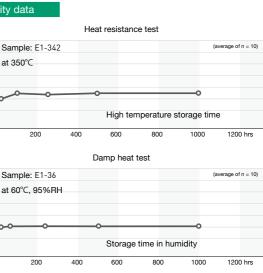
A thermistor having high resistance to mechanical stress

The NS II -E1 has remarkably improved insulation and mechanical strength, with its lead wire outlets mechanically enhanced with ceramics. Suitable for use in humid places.

Approx. 18 sec.

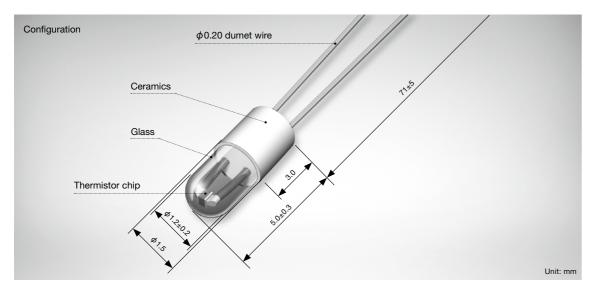

Approx. 1.5mW/°C

Min. 100MΩ at 500VDC


onstant

ssipatior

sulatior



ADVANCED

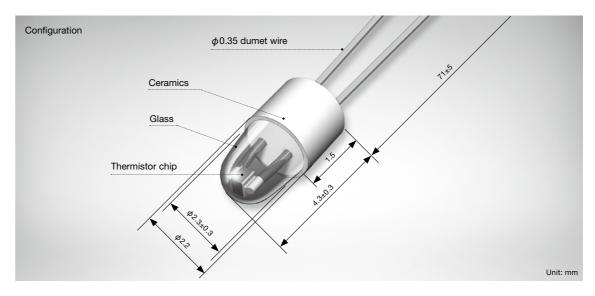
NS II - E3 thermistor

A highly reliable thermistor having enhanced mechanical strength and a reduced size

The NS II -E3 has remarkably improved insulation and mechanical strength with its lead wire outlets mechanically enhanced with ceramics. Suitable for use in humid places. It has been developed by downsizing to the PSB-S3 while keeping the merits of the NS II -E1.

Features	Chip with gold electrode	s				
	Reinforced glass end wit	th high strength ceramics				
	Downsized equivalent to	the PSB-S3				
	Reduced damage to the	glass during stress-giving processing				
	Improved moisture resistance secured with enough creepage distance between the lead wires					
	Long-term stability in res	sistance				
	High-volume supply in his	igh quality by integrated automatic production				
Applications	Suitable for equipment requ	uiring moisture resistance, mechanical strength and also a faster				
	response than the NS ${ m II}$ -E1					
	Water heaters Dish d	ryers •Tumble dryers •Bidets •Coffer makers				
Max. operating temperature	300°C	Reliability data				
Thermal time		Heat resistance test				
constant	Approx. 10 sec.	Sample: E3-342 (average of n = 10)				
		8 3 at 350℃				
Dissipation constant	Approx. 1.2mW/°C					
Insulation resistance	Min. 10M Ω at 50VDC					
	-	0 200 400 600 800 1000 1200 hrs				
		Damp heat test				
		Sample: E3-36 (average of n = 10)				
		gg 3 at 60°C, 95%RH				
		at 60°C, 95%RH t 60°C, 95%RH t 50°C 95%RH t 60°C 95%RH t 60°C 95%RH				

400


600

800

1000

1200 hrs

NSⅢ-U1 thermistor

Heat resistance of 500°C achieved

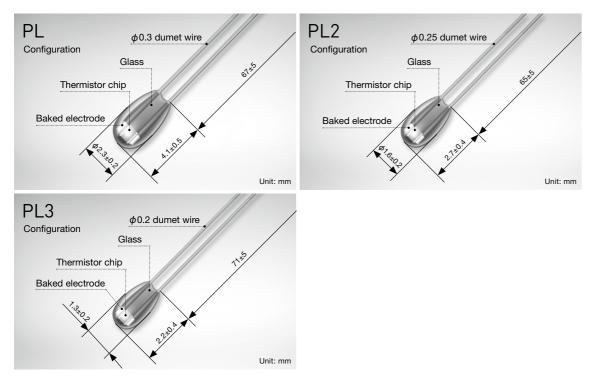
Features

Applications

The world's first thermistor operating at 500°C has been achieved by full review of thermistor chip manufacturing methods and all material compositions. The NSⅢ-U1 has proven results for over 20 years in measuring engine exhaust gases and for heaters.

> • Heat resistance of 500°C • Reinforced glass end with high strength ceramics Reduced damage to the glass during stress-giving processing Improved reliability against oxide scale secured with enough creepage distance between the lead wires • Long-term stability in resistance • High-volume supply in high quality by integrated automatic production

Suitable for equipment for high temperature detection •Exhaust gases from automobiles (EGR systems) temperatures

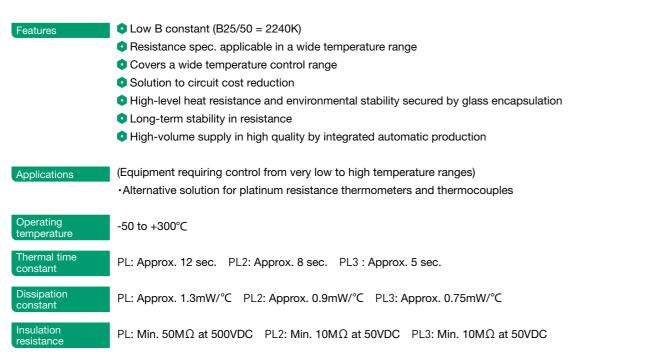

• Composed of special materials for use under high temperatures

- Microwave ovens
- •Fan heaters (kerosene vaporizers) •Sensors for use under harsh conditions at high

ta							
		Heat resi	stance te	est			
e: U1-34	2					(average of	n = 10)
°C							
		0	_				
		Hiç	gh tempe	rature s	torage	time	
200	40	0 60	0	800	1000	1200) hrs
		Damp	heat test				
	2					(average of	n - 10)
e: U1-34						(average or	11 = 10)
, 95%R	H						
		Sto	orage tim	e in hur	nidity		
200	40	0 60		800	1000) 1200	

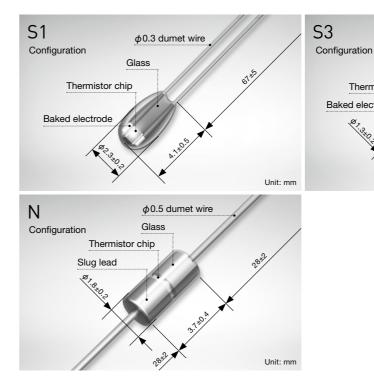
PL

PL Series

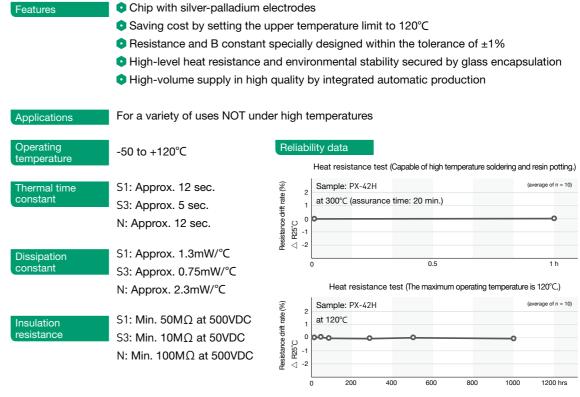


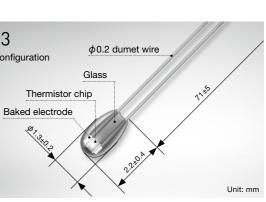
High precision in a wide temperature range

A thermistor chip with low B constant is sealed in glass while keeping the features of PSB-S thermistors.


A PL thermistor can cover a wider temperature control range from -50 to +300°C which requires switching more than one conventional thermistor.

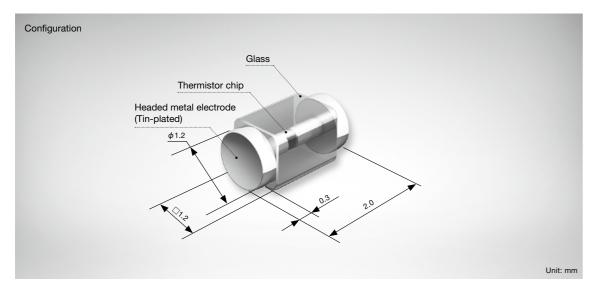
PL thermistors are available in three different sizes, PSB-S1, -S2 and -S3.


RB1


RB1 thermistors

High precision of ±1% tolerance in both resistance and B constant value

High precision both in resistance and B constant value has been achieved by reviewing the materials and manufacturing methods. While the maximum operating temperature is set lower than the standard PSB thermistors, the RB1 keeps the basic structure of glass thermistors. Thus, it is more advantageous than general resin thermistors in resistance to soldering and thermal history through processes.



KG

nsulatior

KG2 thermistor

A highly reliable surface mount thermistor

3 sec. at 350°C

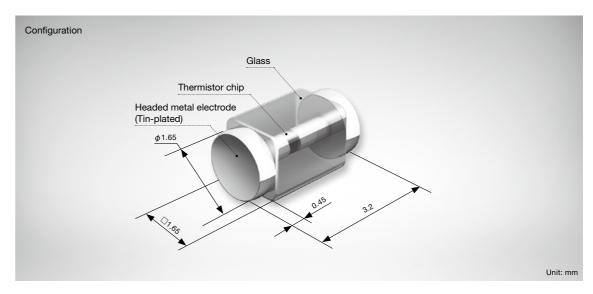
The KG is a highly reliable thermistor that has been developed in response to customer needs. A square glass and headed metal electrodes bring virtually no change for the KG through its lifetime. In addition, the KG provides excellent solderability and mountability.

Features	Metal electrodes for so	Idering						
	Excellent solder wettak	oility with tin	-plated electrode	es				
	High-level heat resistar	nce and envi	ironmental stabil	ity secured by glass er	ncapsulation			
	Excellent solder dip res	sistance						
	The square glass preve	ents deviatio	n or falling off wl	hile being mounted				
Applications	Suitable to be used in a narrower space							
	 Applications requiring high reliability where general-purpose chip thermistors cannot meet 							
	•Overheat prevention for industrial motors •Temperature assurance for IGBT units							
	•Temperature assurance	for surface r	mount electric/ele	ectronic parts				
Operating temperature	-50 to +200°C	Relia	bility data	Heat resistance test	(PCB mount test)			
Thermal time		(9	Sample: KG2T-45		(average of n = 10)			
constant	Approx. 5 sec.	rate (9	₆ at 125℃					
Dissipation	Approx. 1.3mW/°C	tance chift rate (%) 25°C	4					
constant		5 \$		<u> </u>				

High temperature storage time

500

250



Specification	Nominal resista	B constant 25°C/50°C	
KG2B-35	13.72kΩ(0°C)	5kΩ (25°C)	3375K±2%
KG2B-41	28.08kΩ(0°C)	10kΩ(25°C)	3450K±2%
KG2T-43	98.90kΩ(0°C)	30kΩ (25°C)	3950K±2%
KG2T-45	164.8 kΩ(0°C)	50kΩ(25°C)	3950K±2%
KG2T-51	332.3 kΩ(0°C)	100kΩ (25°C)	4000K±2%

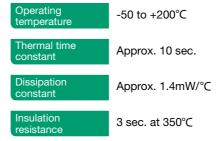
1000

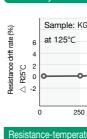
2000 hrs

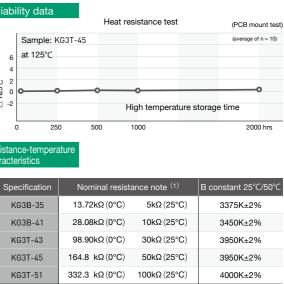
KG3 thermistor

A highly reliable surface mount thermistor

The KG is a highly reliable thermistor that has been developed in response to customer needs. A square glass and headed metal electrodes bring virtually no change for the KG through its lifetime. In addition, the KG provides excellent solderability and mountability.




• The square glass prevents deviation or falling off while being mounted


Applications

Features

Suitable to be used in a narrower space ·Applications requiring high reliability where general-purpose chip thermistors cannot meet •Overheat prevention for industrial motors •Temperature assurance for IGBT units •Temperature assurance for surface mount electric/electronic parts

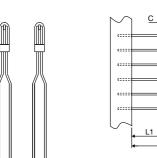
Note (1): Resistance tolerance: ±3%, ±5%

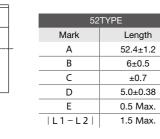
Special Specifications

1 Lead wire plating

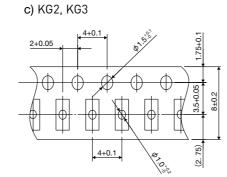
1 Lead wire plating △ Available upon request × No									× Not a	available			
Model name	PSB-S1	PSB-S2	PSB-S3	PSB-N	PSB-S5	NSII-E1	NS∏-E3	PL	PL2	PL3	S1	S2	S3
Non-galvanic nickel (Ni) plating	0	0	0	0	0	×	×	0	0	0	0	0	0
Non-galvanic tin (Sn) plating	0	0	0	\bigtriangleup	0	×	×	0	0	0	0	0	0
Hot tin dipping	\bigtriangleup		Δ	0	×	0	0	\bigtriangleup	\bigtriangleup	Δ	Δ	\bigtriangleup	\triangle

Note) PSB-S7, PSB-S9 and NSⅢ-U1 are provided without plating.


2 Taping

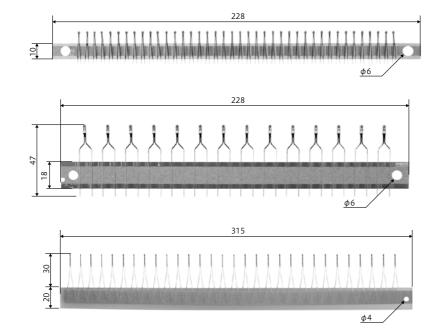

2.54^{+0.6}

12.7±0.2

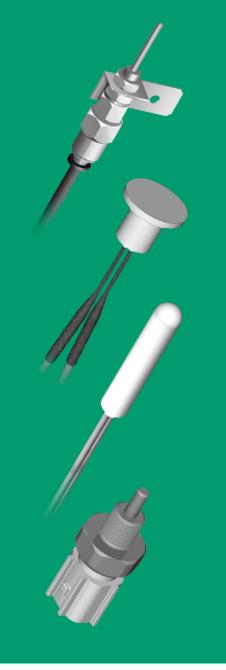

a) PSB-S1, NS∐-E1

12.7±1

b) PSB-N


	Unreeling o	direction		
0 0 0 0	11			
		[]·····[
← ا	,		,	•
Empty 10 pitches min.	Chips	Empt 10 pitches		Leade

Customization


With outstanding FA technologies, we have developed most of our automatized production facilities.

↓ 4±0.2

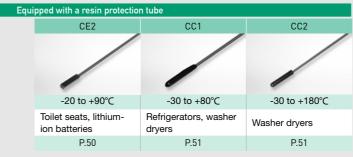
Please consult us for special forming and taping.

#1 Global Brand Shibaura's Standard Product Lineup **Thermistor Sensors**

Note 1) All specifications in this catalogue are for reference only. Note 2) Unless otherwise specified, all values of thermal time constant and dissipation constant are measured in still air.

Thermistor Sensors – Standard Product Lineup

Please see the following pages for details.


		For automobiles	
Model name	MP1	CS1	MP3
Shape	/	10	
Op. temp.	-30 to +200°C	-30 to +150°C	-40 to +200°C
Applications	EV/HEV motors & inverters, liquid level detection	Engines, engine oil	EV/HV motor coils
Page	P.38	P.38	P.39

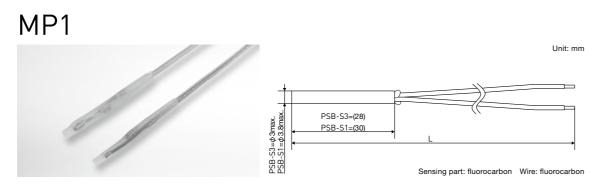
	Non-	contact	Soft contact			Wat	er temperature			Liquid temp
Model name	RDS1	NIP1	TSP1	WT1	WT2		WT3	WT4	WT5	MP2
Shape	10 M	1.100								11
Op. temp.	-10 to +150°C	-10 to +200°C	-20 to +200°C	0 to +120°C	-20 to +120°C		-20 to +120°C	-20 to +120°C	-20 to +120°C	-30 to +2
Application	Fuser rollers for copying machines, printers, multi-function printers	Fuser rollers for copying machines, printers, multi-function printers	Fuser rollers for copying machines, printers, multi-function printers	Water heaters (outlet water)	Water heaters, heat pump water heaters, coffee makers, bidets (warm water)		Bidets (warm water & air)	Water heaters, heat pump water heaters, bidets (warm water & air)	Water heaters, coffee makers	Showcase fro liquid level de
Page	P.40	P.40	P.41	P.42	P.42		P.43	P.43	P.43	P.44

	Hermetic	Equipped with a	a threaded tube			Equi	ipped with a flange	
Model name	HT1	NTN1	MPM1	0CK1-1	0CK2-1		OCK3	ST1
Shape	0	1	100	~	×		*	-
Op. temp.	-20 to +180°C	-20 to +105°C	-20 to +150°C	-20 to +300°C	-20 to +300°C		-20 to +260°C	-20 to +500°C
Applications	Electric pots, dishwashers, hot plates, IH grill pans	Hot water boiler tanks, machine tool oil, medical equipment water	Hot water boiler tanks, machine tool oil, medical equipment water	Microwave oven chambers	Microwave oven chambers		Microwave oven chambers (air & vapor), heaters	Heater burners
Page	P.44	P.45	P.45	P.46	P.46		P.47	P.47

	Equipped with a copper protection tube		Resin dipped		
Model name	EP1	KTM1	EE1	KT1	CE1
Shape			/	/	
Op. temp.	-30 to +120°C	-30 to +100°C	-30 to +100°C	-30 to +80°C	-30 to +80°C
Applications	Air conditioner pipes incl. discharge pipes	Air conditioner pipes	Air conditioners (room & outdoor air)	Air conditioners (room & outdoor air)	Refrigerator chambers
Page	P.48	P.48	P.49	P.49	P.50

	Equipped with a lug terminal					
Model name	RTZ1	RT1	RT2	EP2	KTEP1	
Shape	0	0	800	See.	8	
Op. temp.	-20 to +300°C	-10 to +250°C	-20 to +180°C	-30 to +120°C	-30 to +85°C	
Applications	Hot plates for cooking devices, automobile braking systems	Irons	Automobile inverters, heat pump water heaters	Heatsinks	Heatsinks	
Page	P.52	P.52	P.53	P.53	P.53	

	Surface te	mperature	
KN1	KN2	KN3	KN
	-		1
-20 to +300°C	-20 to +300°C	-20 to +300°C	-20 to +
IH cooking devices	IH cooking devices	IH cooking devices, IH rice cookers	IH cooking d IH rice cooke
P.54	P.54	P.55	P.55



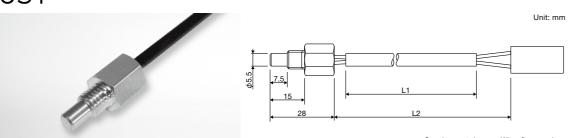
e freezers, el detection

P.44

For automobiles

Heat, oil and solvent proof

Features	Excellent in heat, oil and solvent resistance with fluorocarbon sealing				
	Fixing bracket design is available				
	Applicable to high temperatures and highly accurate measurements				
Applications	EV/HEV motors & inverters				
	Liquid level detection (using PSB-S3 glass-encap. thermistor element only)				
Operating temperature	-30 to +200°C Please consult us when higher temperatures are required.				
Thermal time constant	PSB-S1 glass-encap. thermistor element $\tau \doteq$ 8 sec. (in stirred liquid)				
	PSB-S3 glass-encap. thermistor element $\tau \doteq$ 4 sec. (in stirred liquid)				
Dissipation constant	PSB-S1 glass-encap. thermistor element $\delta \doteq 2$ mW/°C				
	PSB-S3 glass-encap. thermistor element $\delta \approx 1.2$ mW/°C				
Withstand voltage	1200VAC for 1 sec.				
Insulation resistance	Min. 100M Ω at 500VDC				
Resistance	$R100 = 3.3k\Omega$ Other options available				
B constant	B0/100 = 3970K Other options available				


MP3

Heat, oil and solvent proof

Features	Excellent in heat, oil and solvent resista		
	Fixing bracket design is available		
	Temperature detection on surface with		
Applications	EV/HV motor coils		
Operating temperature	-40 to +200°C		
Thermal time constant	$\tau \doteq$ 4 sec. (in stirred liquid)		
Dissipation constant	δ ≒ 1.2mW/°C		
Withstand voltage	1200VAC for 1 sec.		
Insulation resistance	Min. 100M Ω at 500VDC		
Resistance	$R200^{\circ}C = 1k\Omega$ Other options available		
B constant	B25/50 = 2240K Other options available		

CS1

Sensing part: brass Wire: fluorocarbon

Heat and oil proof

Features	• Epoxy resin-sealed into a cut protection tube
	Highly heat and oil resistant epoxy resin
Applications	Engines, engine oil
Operating temperature	-30 to +150°C
Thermal time constant	$\tau \leq 5$ sec. (in stirred liquid)
Dissipation constant	$\delta = 5.2 \text{mW/°C}$
Withstand voltage	1200VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	Optional
B constant	Optional

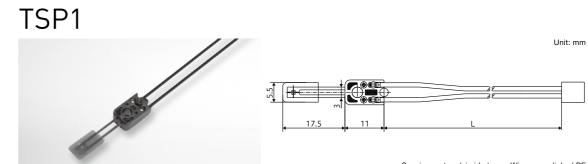
Unit: mm

<u> </u>			
J			
1	1		
	L		

Sensing part: fluorocarbon Wire: fluorocarbon

tance with fluorocarbon sealing

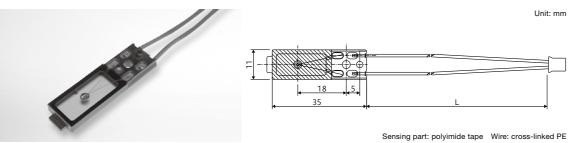
flat type sensor


Non-contact

RDS1 Unit: mm Infrared detecting part 10 44 Wire: cross-linked PE

Patent No. 5207329, fast response and high accuracy Response is compared to other Shibaura non-contact type sensors

Features	Patent No.5207329, US 9,176,443			
	Non-contact temperature detection using infrared rays			
	Infrared detection type for fuser rollers			
	• Fast response and high accuracy with two compact thermistor elements arranged symmetrically			
Applications	Fuser rollers for copying machines, printers and multi-function printers			
Operating temperature	-10 to +150°C (on a compensation thermistor element, except connector)			
	Sensing part: -10 to +450°C (based on detected temperature of an object)			
	The maximum operating temperature (150°C) shall not be exceeded.			
Thermal time constant	$ au$ = 0.6 ±0.2 sec. (at 5mm from ϕ 40 black roller)			
Dissipation constant	$\delta = 0.23 \text{mW/}^{\circ}\text{C}$			
Withstand voltage	500VAC for 1 sec.			
Insulation resistance	Min. 100M Ω at 500VDC			
Resistance	R25 = $220k\Omega$			
B constant	B25/50 = 3750K			


Soft contact

Light touch solution with low cost and high durability

Features	• A light touch (approx. 1.2g at a push-
	rollers
	Basic and standard contact type available
	Soft contact reduces damage on rollers
Applications	Fuser rollers for copying machines, printer
Operating temperature	-20 to +200°C (at the sensing part) Please of
Thermal time constant	$\tau \leq 2$ sec. (push-in depth of 1mm on $\phi 25$
Dissipation constant	$\delta \approx 0.4 \text{mW/°C}$
Withstand voltage	1000VAC for 1 min.
Insulation resistance	Min. 100MΩ at 500VDC
Resistance	R200 = 1kΩ
B constant	B100/200 = 4537K

NIP1

Has a micro-miniature glass-encapsulated thermistor element

Features	 Non-contact type surface temperature detection, with a micro-miniature glass- encapsulated thermistor element, for fuser rollers Lower cost than infrared detection type
	Low cost alternative to a contact type using the same circuit
Applications	Fuser rollers for copying machines, printers and multi-function printers
Operating temperature	-10 to +200°C (at the sensing part) Please consult us when higher temperatures are required.
Thermal time constant	$\tau \leq 3.5$ sec. (at 1mm from ϕ 25 roller)
Dissipation constant	$\delta = 0.45 \text{mW/}^{\circ}\text{C}$
Resistance	R150 = $13.80 k\Omega$
B constant	B100/200 = 4875K

Sensing part: polyimide tape Wire: cross-linked PE Other options available

Cost is compared to other Shibaura soft contact type sensors

n-in depth of 1mm) sensing solution for fuser

able at low cost

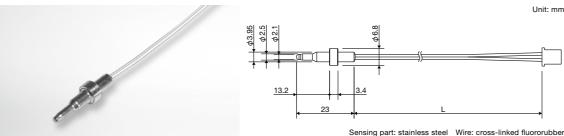
ers and multi-function printers

e consult us when higher temperatures are required.

5 roller)

Water temperature

WT1 Unit: mm 13.2

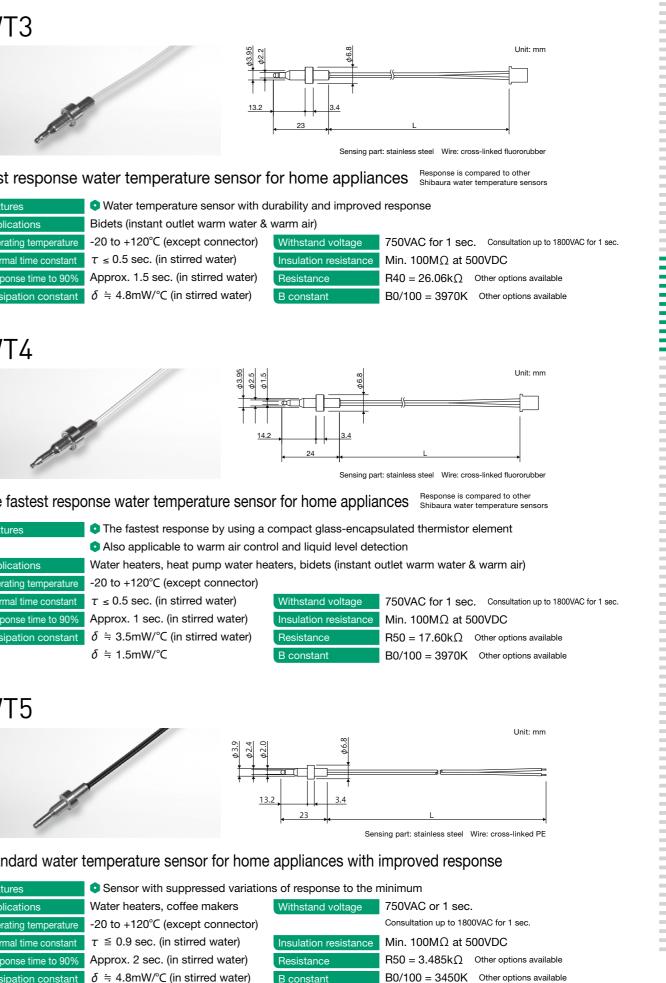

Sensing part: stainless steel Wire: cross-linked fluororubbe

Patent No. 5523982

Sensing solution for temperature control and abnormality monitoring/backup functions

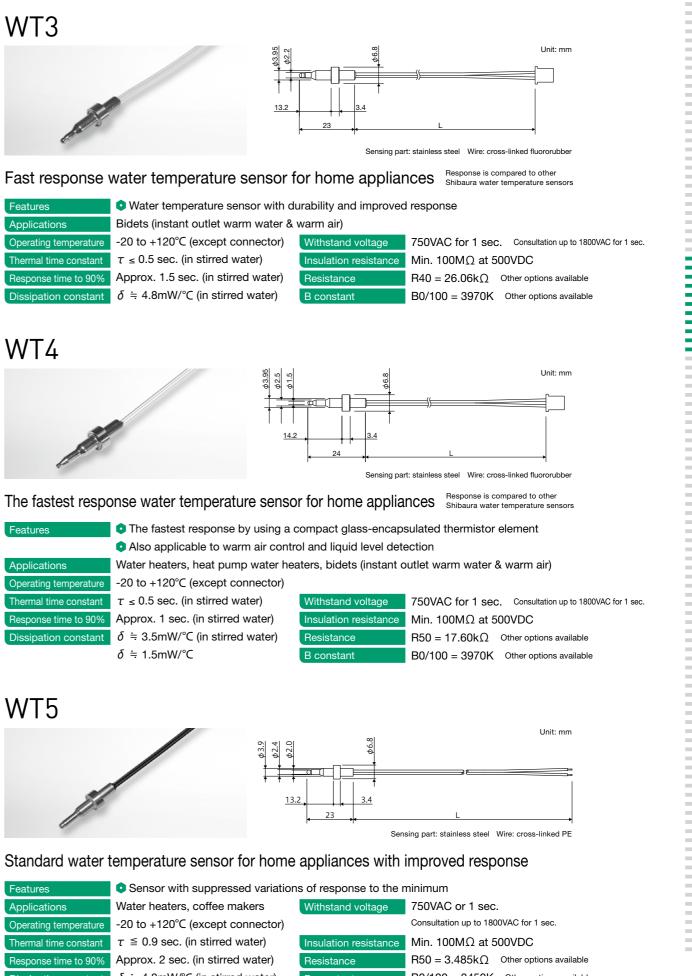
Features • Patent No.5523982, US 9,322,718		
	• Sensing solution for temperature control and abnormality monitoring/backup	
	functions	
	Has two glass-encapsulated thermistor elements of similar specifications	
	A slight difference in response between the two thermistor elements	
Applications	Water heaters (outlet water)	
Operating temperature	re 0 to +120°C (except connector)	
Thermal time constant	$\tau \leq 1.2$ sec.	
Response time to 90%	90% Approx. 2.5 sec. (in stirred water)	
Dissipation constant	$\delta \doteq 4.5$ mW/°C (in stirred water) With two thermistor elements energized	
Withstand voltage	750VAC for 1 sec.	
Insulation resistance	resistance Min. 100M Ω at 500VDC	
Resistance	$R50 = 3.485 k\Omega$ Other options available	
B constant	B0/100 = 3450K Other options available	

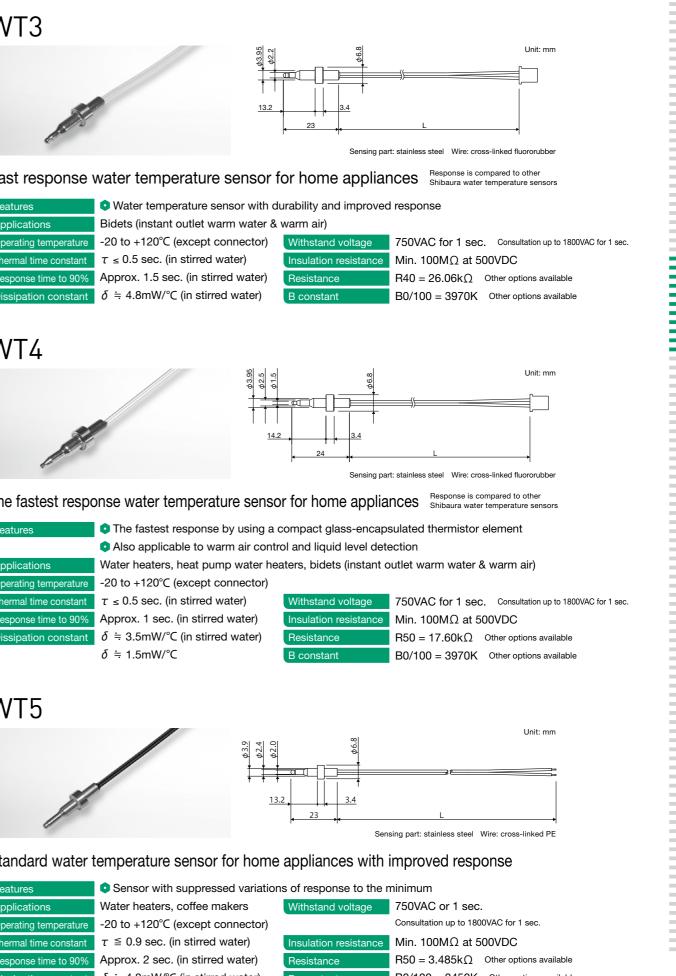
WT2



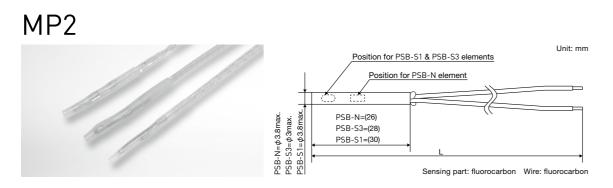
Standard water temperature sensor for home appliances

Features	Highly durable	
	 Covers the whole water temperature range 	
Applications	Water heaters, heat pump water heaters, coffee makers, bidets (instant inlet water)	
Operating temperature	-20 to +120°C (except connector)	
Thermal time constant	$\tau \leq 1$ sec. (in stirred water)	
Response time to 90%	Approx. 2 sec. (in stirred water)	
Dissipation constant	$\delta = 4.8 \text{mW/}^{\circ}\text{C}$ (in stirred water)	
Withstand voltage	750VAC for 1 sec. Consultation up to 1800VAC for 1 sec.	
Insulation resistance	Min. 100MΩ at 500VDC	
Resistance	R50 = 3.485kΩ Other options available	
B constant	B0/100 = 3450K Other options available	

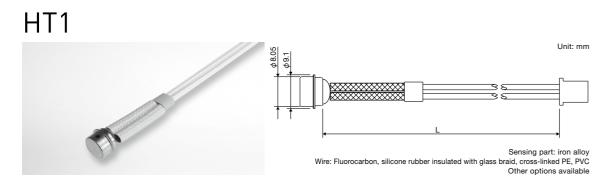



13.2

WT4



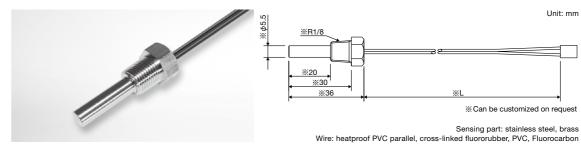
res	Sensor with suppressed variation	ns of res
ations	Water heaters, coffee makers	Withst
ing temperature	-20 to +120°C (except connector)	
al time constant	$ au \leq$ 0.9 sec. (in stirred water)	Insula
nse time to 90%	Approx. 2 sec. (in stirred water)	Resist
ation constant	$\delta \approx 4.8 \text{mW/°C}$ (in stirred water)	B con


Liquid temperature

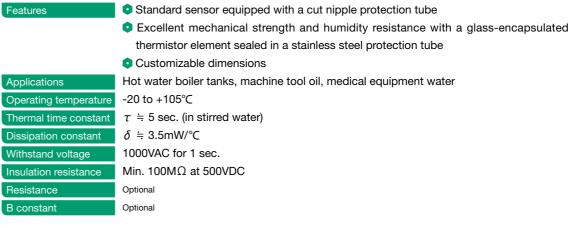
Heat, oil and solvent proof

Features	Excellent heat, oil and solvent proof with fluorocarbon sealing	
	Fixing bracket design is available	
	Applicable to high temperatures and highly accurate measurements	
Applications	Showcase freezers	
	Liquid level detection (using PSB-S3 glass-encap. thermistor element only)	
Operating temperature	-30 to +200°C Please consult us when higher temperatures are required.	
Thermal time constant	PSB-S1 & PSB-N glass-encap. thermistor elements $\tau \doteq 8$ sec. (in stirred liquid)	
	PSB-S3 glass-encap. thermistor elements $\tau \doteq 4$ sec. (in stirred liquid)	
Dissipation constant	PSB-S1 & PSB-N glass-encap. thermistor elements $\delta \doteq 2$ mW/°C	
	PSB-S3 glass-encap. thermistor elements $\delta = 1.2$ mW/°C	
Withstand voltage	1200VAC for 1 sec.	
Insulation resistance	Min. 100MΩ at 500VDC	
Resistance	R100 = $3.3k\Omega$ Other options available	
B constant	B0/100 = 3970K Other options available	

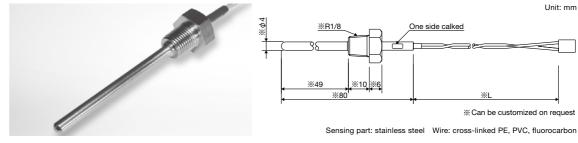
Hermetic



Fast response Response is compared to other Shibaura hermetic type sensors


Features	Robust casing and fast response
	Hermetic type standard surface temperature sensor
Applications	Electric pots, dishwashers, hot plates, IH grill pans
Operating temperature	-20 to +180°C (except connector)
Thermal time constant	$\tau \approx 4$ sec. (on an aluminium hot plate at 100°C)
Dissipation constant	$\delta \Rightarrow 3mW/^{\circ}C$
Withstand voltage	1800VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	$R100 = 3.3k\Omega$ Other options available
B constant	B0/100 = 3970K Other options available

Equipped with a threaded tube

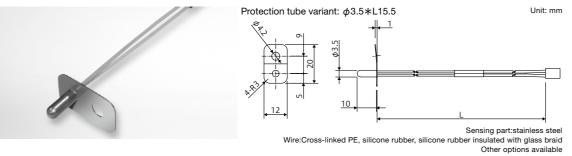

NTN1

Equipped with a customizable cut protection tube

MPM1

Water proof solution equipped with a stainless protection tube

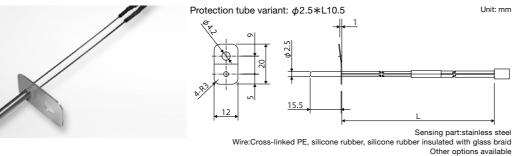
Features	 Superior in mechanical strength with a constraint of a glass-encapsulated thermistor element Has a water-sealed thermistor element (
	wires)
	Longer protection tubes than NTN1
	Customizable dimensions
Applications	Hot water boiler tanks, machine tool oil, me
Operating temperature	-20 to +150°C
Thermal time constant	$ au \doteq$ 20 sec. (in stirred water)
Dissipation constant	δ ≒ 1.5mW/°C
Withstand voltage	1000VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	Optional
B constant	Optional



- combination of a stainless protection tube and nt
- : (using PTFE only for thermistor element lead

nedical equipment water

Equipped with a flange


0CK1-1

Global standard sensor for microwave ovens

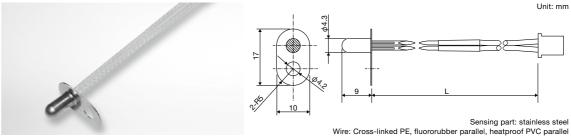
Features	Max. temperature up to 300°C
	Exposed in an oven chamber
Applications	Microwave oven chambers
Operating temperature	-20 to +300°C (from the tip of protection tube to the flange)
Thermal time constant	$\tau \doteq 80$ sec.
Dissipation constant	$\delta \approx 2.1 \text{mW/°C}$
Withstand voltage	1200VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	$R200 = 1k\Omega$ Other options available
B constant	B100/200 = 4537K Other options available

0CK2-1

Fast response solution for microwave ovens Response is compared to other Shibaura flange type sensors

Features	• The second generation oven sensor	
	Outstanding accuracy and response solution for oven temperature control	
	Olass-encapsulated thermistor elements which withstand high voltage are available	
Applications	Microwave oven chambers	
Operating temperature	-20 to +300°C (from the tip of protection tube to the flange)	
Thermal time constant	$\tau = 60$ sec.	
Dissipation constant	$\delta \doteq 2 \text{mW/°C}$	
Withstand voltage	1200VAC for 1 sec. Consultation up to 2000VAC	
Insulation resistance	Min. 100MΩ at 500VDC	
Resistance	R200 = $1k\Omega$ Other options available	
B constant	B100/200 = 4537K Other options available	

OCK3

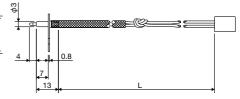


Multi-detection with high sensitivity and response Sensitivity and response Sensitivity and response Shibaura flange type sensors

Features	• A multi-detector for temperature, vapor
Applications	Microwave oven chambers (air & vapor), h
Operating temperature	-20 to +260°C (from the tip of protection t
Thermal time constant	$\tau \doteqdot $ 10 sec. (on an aluminium hot plate)
Dissipation constant	$\delta \approx 1.2 \text{mW/°C}$
Withstand voltage	1200VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	$R200 = 1k\Omega$ Other options available
B constant	B100/200 = 4537K Other options available

ST1

Unit: mm

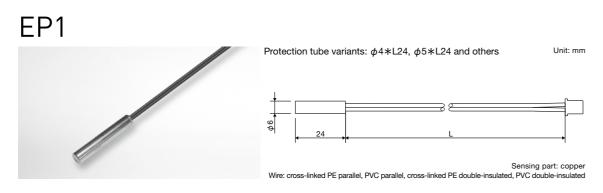


High heat resistance Heat resistance is compared to other Shibaura flange type sensors

 One-piece protection cap
Standard burner sensor available wi
thermistor element
Heater burners
-20 to +500°C (from the tip of protection tub
$\tau \approx 80$ sec. $\tau \leq 7$ sec. (in oil to the flange
δ ≒ 3mW/°C
1200VAC for 1 sec.
Min. 100M Ω at 500VDC
$R200 = 8k\Omega$ Other options available
B150/250 = 5300K Other options available

Unit: mm

Sensing part: stainless steel Wire: Cross-linked PE, silicone rubber, silicone rubber insulated with glass braid Other options available


or and air flow speed heaters tube to the flange)

Unit: mm

vith a highly heatproof glass-encapsulated

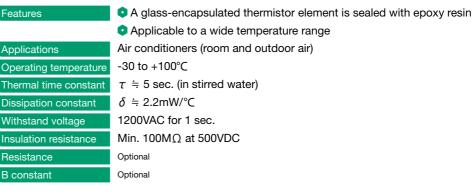
ube to the flange) e)

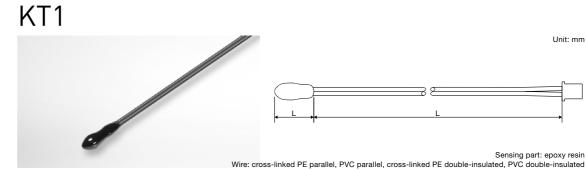
Equipped with a copper protection tube

Using a glass-encapsulated thermistor element, low cost Cost is compared to other Shibaura sensors equipped with a copper protection tube

• A glass-encapsulated thermistor element is sealed in a copper protection tube Features • High reliability, applicable to a wide temperature range • Many variants of the protection tube are available Air conditioner pipes including discharge pipes -30 to +120°C Operating temperatur $\tau \doteq 7$ sec. (in stirred water) nermal time constar $\delta \approx 3.3 \text{mW/°C}$ sipation constant 1200VAC for 1 sec. Vithstand voltage Min. 100M Ω at 500VDC ulation resistance Optional Resistance Optional R constant

KTM1


Using a bare thermistor chip, low cost Cost is compared to other Shibaura sensors equipped with a copper protection tube


Features	 A bare thermistor chip is sealed in a copper protection tube Lower cost than using a glass-encapsulated thermistor element 	
	Many variants of the protection tube are available	
Applications	Air conditioner pipes	
Operating temperature	-30 to +100°C	
Thermal time constant	$\tau \doteqdot 7.5$ sec. (in stirred water)	
Dissipation constant	$\delta \approx 5.5 \text{mW/°C}$	
Withstand voltage	1200VAC for 1 sec.	
Insulation resistance	Min. 100M Ω at 500VDC	
Resistance	R25 = $10k\Omega$, R25 = $5k\Omega$ Other options available	
B constant	B25/50 = 4100K, B25/50 = 3950K Other options available	

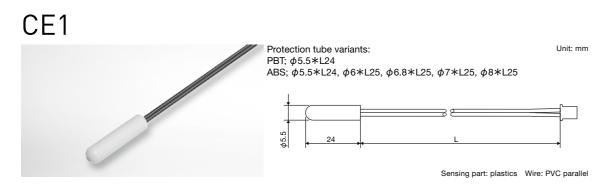
Resin dipped

Using a glass-encapsulated thermistor element

Using a bare thermistor chip

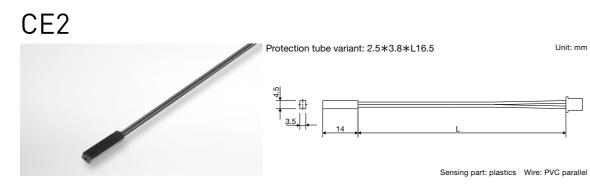
Features	A bare thermistor chip is sealed with epotential
	Lower cost than using a glass-encapsula
Applications	Air conditioners (room & outdoor air)
Operating temperature	-30 to +80°C
Thermal time constant	$\tau \approx 5$ sec. (in stirred water)
Dissipation constant	$\delta \approx 5 \text{mW/°C}$
Withstand voltage	1200VAC for 1 sec.
Insulation resistance	Min. 100M Ω at 500VDC
Resistance	$R25 = 10k\Omega, R25 = 5k\Omega$ Other options available
B constant	B25/50 = 4100K, B25/50 = 3950K Other opti

Unit: mm


	_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	L
L .	
	I

Sensing part: epoxy resin Wire: cross-linked PE parallel, PVC parallel, cross-linked PE double-insulated, PVC double-insulated

oxy resin ated thermistor element


tions available

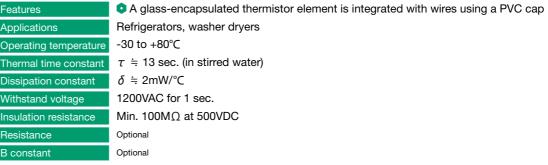
## Equipped with a resin protection tube



#### Specialized for refrigerators

Features	Proven results in low temperature ambient measurements	
	Many variants of the ABS protection tube are available	
Applications	Refrigerator chambers	
Operating temperature	-30 to +80°C	
Thermal time constant	$\tau \doteq$ 20 sec. (in stirred water)	
Dissipation constant	$\delta \approx 2.5 \text{mW/°C}$	
Withstand voltage	1200VAC for 1 sec.	
Insulation resistance	Min. 100M $\Omega$ at 500VDC	
Resistance	Optional	
B constant	Optional	




#### Mountable in a narrow space

Features	• Equipped with a square resin protection tube, assuming the sensor to be mounted in
	a narrow space
Applications	Toilet seats, lithium-ion batteries
Operating temperature	-20 to +90°C
Thermal time constant	$\tau = 3.5$ sec. (in stirred water)
Dissipation constant	$\delta = 1.5 \text{mW/°C}$
Withstand voltage	600VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	Optional
B constant	Optional

## CC1



### Applicable to long wire, available in small volumes



## CC2

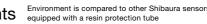


### Applicable to high temperature environments Environment is compared to other Shibaura sensors equipped with a resin protection tube

Features	A glass-encapsulated thermistor elements
Applications	Washer dryers
Operating temperature	-30 to +180°C
Thermal time constant	$\tau \doteq$ 10 sec. (in stirred water)
Dissipation constant	$\delta \approx 2.5 \text{mW/°C}$
Withstand voltage	1200VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	Optional
B constant	Optional

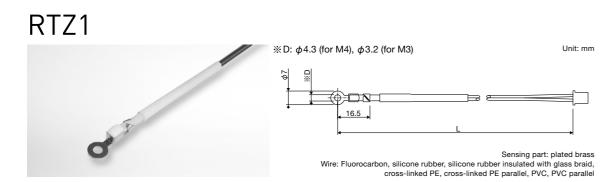


Unit: mm


 * *	

Sensing part: PVC Wire: PVC parallel, PVC double-insulated, PVC circular

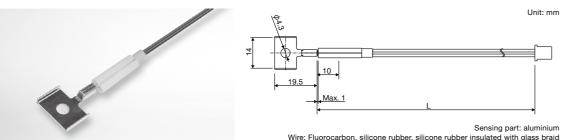
Unit: mm


 <u>د ل</u>	

Sensing part: highly heatproof plastics Wire: fluororubber parallel



nent is wire-to-wire spliced


## Equipped with a lug terminal

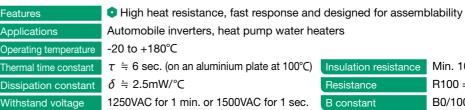


High heat resistance and fast response Heat resistance and response are compared to other Shibaura sensors equipped with a lug terminal

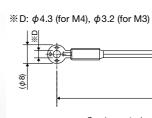
Features	Sensor with a lug terminal, exhibiting fast response and high heat resistance
Applications	Hot plates for cooking devices, automobile braking systems
Operating temperature	-20 to +300°C
Thermal time constant	$\tau = 3$ sec. (on an aluminium plate at 100°C)
Dissipation constant	$\delta = 2.5 \text{mW/°C}$
Withstand voltage	500VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	Optional
B constant	Optional

## RT1

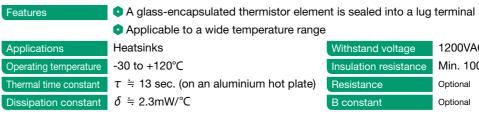



High heat resistance and fast response Heat resistance and response are compared to other Shibaura sensors equipped with a lug terminal

Features	Fast response and high heat resistance	
Applications	Irons	
Operating temperature	-10 to +250°C	
Thermal time constant	$\tau \approx$ 3 sec. (on an aluminium plate at 100°C)	
Dissipation constant	$\delta = 3$ mW/°C	
Withstand voltage	1200VAC for 1 sec.	
Insulation resistance	Min. 100M $\Omega$ at 500VDC	
Resistance	$R150 = 3.161 k\Omega$ Other options available	
B constant	B100/200 = 4537K Other options available	


## RT2

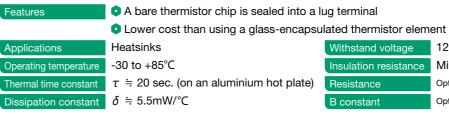



Standard sensor equipped with a lug terminal having high heat resistance Heat resistance is compared to other Shibaura sensors equipped with a lug terminal








#### Enhanced insulation: using a glass-encapsulated thermistor element



## KTEP1



#### Enhanced insulation: using a bare thermistor chip





Unit: mm Sensing: plated brass Wire: Fluorocarbon, silicone rubber, silicone rubber insulated with glass braid, cross-linked PE, cross-linked PE parallel, PVC, PVC parallel Other options available

ulation resistance	Min. 100M $\Omega$ at 500VDC	
sistance	$R100 = 3.3k\Omega$ Other options available	
constant	B0/100 = 3970K Other options available	

Unit: mm

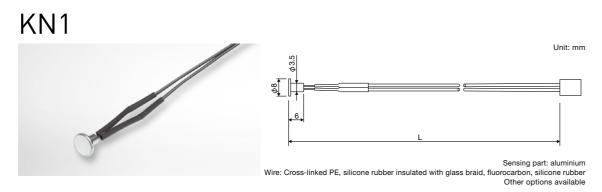
Unit: mm

		0
	38	
_		ι
	L	
		1

Sensing part: aluminium Wire: cross-linked PE parallel, PVC parallel

Withstand voltage	12
Insulation resistance	Μ
Resistance	Op
B constant	Op

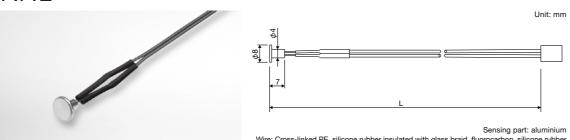
200VAC for 1 sec. Ain.  $100M\Omega$  at 500VDCptional ptional


φ3.2 (for M3)	
	 ۶

Sensing part: aluminium Wire: cross-linked PE parallel, PVC parallel

Withstand voltage	
Insulation resistance	I
Resistance	(
B constant	(

1200VAC for 1 sec. Min. 100M $\Omega$  at 500VDC Optional Optional


## Surface temperature



Aluminium casing: fast response Response is compared to other Shibaura surface temperature sensors

Features	Fast response solution with low cost design
Applications	IH cooking devices
Operating temperature	-20 to +300°C
Thermal time constant	$\tau \approx 0.7$ sec. (on an aluminium plate at 100°C)
Dissipation constant	δ ≒ 2mW/°C
Withstand voltage	1800VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	R100 = 3.3kΩ
B constant	B0/100 = 3970K

## KN2



Sensing part: aluminium Wire: Cross-linked PE, silicone rubber insulated with glass braid, fluorocarbon, silicone rubber Other options available

### Aluminium casing: standard

Features	• Surface temperature sensing solution with low cost design
Applications	IH cooking devices
Operating temperature	-20 to +300°C
Thermal time constant	$\tau \doteq 4$ sec. (on an aluminium plate at 100°C)
Dissipation constant	$\delta \Rightarrow 3mW/^{\circ}C$
Withstand voltage	1000VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	$R100 = 3.3k\Omega$
B constant	B0/100 = 3970K

## KN3



#### Ceramic casing: fast response Response is compared to other Shibaura surface temperature sensors

Features	High insulation property and excellent r
	• A ceramic case provides high insulation
Applications	IH cooking devices, IH rice cookers
Operating temperature	-20 to +300°C (only for the sensing surface
Thermal time constant	$\tau \approx$ 1.2 sec. (on an aluminium plate at 10
Dissipation constant	$\delta \approx 2 \text{mW/°C}$
Withstand voltage	5000VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	R100 = 3.3kΩ
B constant	B0/100 = 3970K

## KN4



### Ceramic casing: standard

Features	High insulation property and excellent results.
	• A ceramic case provides high insulation
Applications	IH cooking devices, IH rice cookers
Operating temperature	-20 to +300°C (only for the sensing surface
Thermal time constant	$\tau \approx$ 7 sec. (on an aluminium plate at 100°
Dissipation constant	δ ≒ 3mW/°C
Withstand voltage	5000VAC for 1 sec.
Insulation resistance	Min. 100M $\Omega$ at 500VDC
Resistance	$R100 = 3.3k\Omega$
B constant	B0/100 = 3970K



Unit: mm

	I	
_		

Sensing part: ceramics Wire: Cross-linked PE, silicone rubber insulated with glass braid, fluorocarbon, silicone rubber Other options available

#### resistance to pressure

on and a shape securing mountability

ce) 100°C)

Unit: mm

	;			
 	L			
		Sonoin	a part: co	amio

Wire: Cross-linked PE, silicone rubber insulated with glass braid, fluorocarbon, silicone rubber Other options available

> resistance to pressure on and a shape securing mountability

ce) )°C)

## Absolute humidity sensors

## SP1

R0.4



Unit: mm <u>4-φ3.5</u> (¢18.6) → φ17.8

Sensing part: aluminium Wire: fluororubber shielded, PVC

Other options available

#### Completey unique in the world

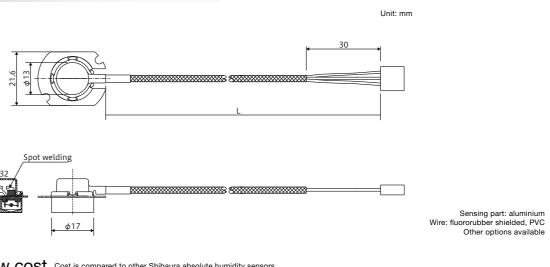
Features	Indispensable sensor for microw	ave ovens		
	The only absolute humidity sens	or in the worl	d using a glass-end	apsulated thermistor
	element			
	Applicable up to 200°C			
Applications	Exhaust air ducts for microwave ov	ens and tum	ole dryers, mist sau	na rooms
Operating temperature	-5 to +200°C (sensing part except v	wire harness)		
Withstand voltage	500VAC for 1 sec.			
Insulation resistance	Min. 50M $\Omega$ at 500VDC			
Zero balance	-3 to +3mV from +40 to +150°C (aft	ter resistance	compensation)	
R4 in standard test circuit	10kΩ ±390Ω			
Output	5.3 ±1mV at +40°C, 35g/m ³	Star	dard output charad	cteristics
Stabilization time	8 ±5 sec. after being energized	12	·	
Humidity response	12 ±5 sec. (90% response)	12		
Sensibility to gas/ carbon dioxide	-0.3mV (at 1000ppm)	10		
Sensibility to gas/ ethyl alcohol	-0.3mV (at 1000ppm)	<u>ک</u> 8		60°C
Sensibility to gas/ isobutane	-0.3mV (at 1000ppm)	Dutput voltage (mV) + 9 ∞		80°C
		9 olta		Measuring circuit
		> 4		HS-13
		rtpi		SV ₹ S B Vm ≷-R3.
		no 4		5V ≑ SE Vm <-R3.

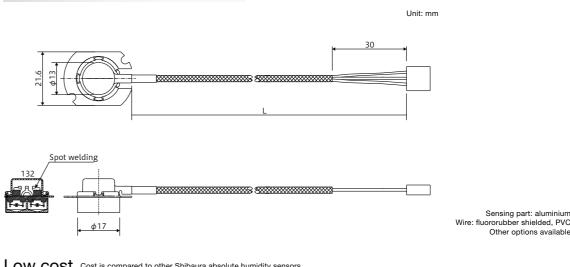
2

0

-20

GND


50

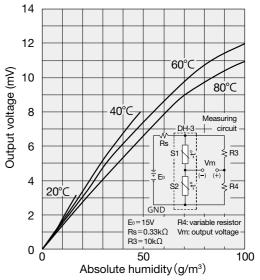

Absolute humidity (g/m³)

100

## SPD1








LOW COSt Cost is compared to other Shibaura absolute humidity sensors

Features	Indispensable absolute humidity sense	sor fo
	single-function microwave ovens	
	Cost effective solution for absolute here	umid
	Detects the difference between the in	iside
Applications	Exhaust air ducts for microwave ovens	
Operating temperature	-5 to +100°C (sensing part except wire h	narne
Withstand voltage	500VAC for 1 sec.	
Insulation resistance	Min. 50M $\Omega$ at 500VDC	
Zero balance	-3 to +3mV from +40 to +80°C (after res	istan
R4 in standard test circuit	10kΩ ±390Ω	
Output	6 ±1mV at +40°C, 35g/m ³	
Stabilization time	Max. 120 sec. after being energized	
Humidity response	S1: Max. 50 sec. S2: Min. 5 min.	
Sensibility to gas/ carbon dioxide	-0.3mV (at 1000ppm)	
Sensibility to gas/ ethyl alcohol	-0.3mV (at 1000ppm)	(mV)
Sensibility to gas/ isobutane	-0.3mV (at 1000ppm)	ut voltage (mV)
		ut <

for automatic cooking with

- idity sensing
- le and outside of a chamber
- ness)
- ance compensation)



#### Standard output characteristics

### Sensing parts for standard products

							Sensing pa	rt materials					
Model name	Page	Aluminium	Polyimide tape	Epoxy resin	Brass	Copper	Plastics	Stainless steel	Ceramics	Iron alloy	Fluorocarbon	PVC	Nylon
MP1	P.38										•		
CS1	P.38				•								
MP3	P.39										•		
NIP1	P.40		•										
TSP1	P.41		•										
WT1	P.42							•					
WT2	P.42							•					
WT3	P.43							•					
WT4	P.43							•					
WT5	P.43							•					
MP2	P.44										٠		
HT1	P.44									•			
NTN1	P.45				•			•					
MPM1	P.45							•					
0CK1-1	P.46							•					
0CK2-1	P.46							•					
OCK3	P.47							•					
ST1	P.47							•					
EP1	P.48					•							
KTM1	P.48					•							
EE1	P.49			•									
KT1	P.49			•									
CE1	P.50						•						
CE2	P.50						•						
CC1	P.51											•	
CC2	P.51						•						
RTZ1	P.52				•								
RT1	P.52	•											
RT2	P.53				•								
EP2	P.53	•											
KTEP1	P.53	•											
KN1	P.54	•											
KN2	P.54	•											
KN3	P.55								•				
KN4	P.55								•				
SP1	P.56	•											
SPD1	P.57	•											

### Wires for standard products

								Wires						
Model name	Page	Fluorocarbon	Silicone rubber	Silicone rubber insulated with glass braid	Cross-linked PE	Cross-linked PE parallel	Cross-linked PE double-insul.	Fluororubber parallel	Cross-linked fluororubber	Fluororubber shielded	PVC	PVC parallel	PVC double-insul.	PVC circular
MP1	P.38	•	05		0		0							
CS1	P.38	•												
MP3	P.39	•												
RDS1	P.40				•									
NIP1	P.40				٠									
TSP1	P.41				•									
WT1	P.42								•					
WT2	P.42								•					
WT3	P.43								•					
WT4	P.43								•					
WT5	P.43				٠									
MP2	P.44	•												
HT1	P.44	٠		•	٠						•			
NTN1	P.45	•							•		•	•		
MPM1	P.45	•			•						•			
0CK1-1	P.46		•	•	•									
0CK2-1	P.46		•	•	٠									
OCK3	P.47		•	•	•									
ST1	P.47				٠			•				•		
EP1	P.48					•	•					•	•	
KTM1	P.48					•	•					•	•	
EE1	P.49					•	•					•	•	
KT1	P.49					•	•					•	•	
CE1	P.50											•		
CE2	P.50											•		
CC1	P.51											•	•	•
CC2	P.51							•						
RTZ1	P.52	•	•	•	•	•					•	•		
RT1	P.52	•	•	•										
RT2	P.53	•	•	•	•	•					•	•		
EP2	P.53					•						•		
KTEP1	P.53					•						•		
KN1	P.54	•	•	•	•									
KN2	P.54	•	•	•	•									
KN3	P.55	•	•	•	•									
KN4	P.55	•	•	•	•									
SP1	P.56									•	•			
SPD1	P.57									•	•			

The table shows typical materials only. Please consult us for your specific requirement.

The table shows typical materials only. Please consult us for your specific requirement.

# Find your solution in SHIBAURA!!



I need a sensor to fit our mounting conditions.

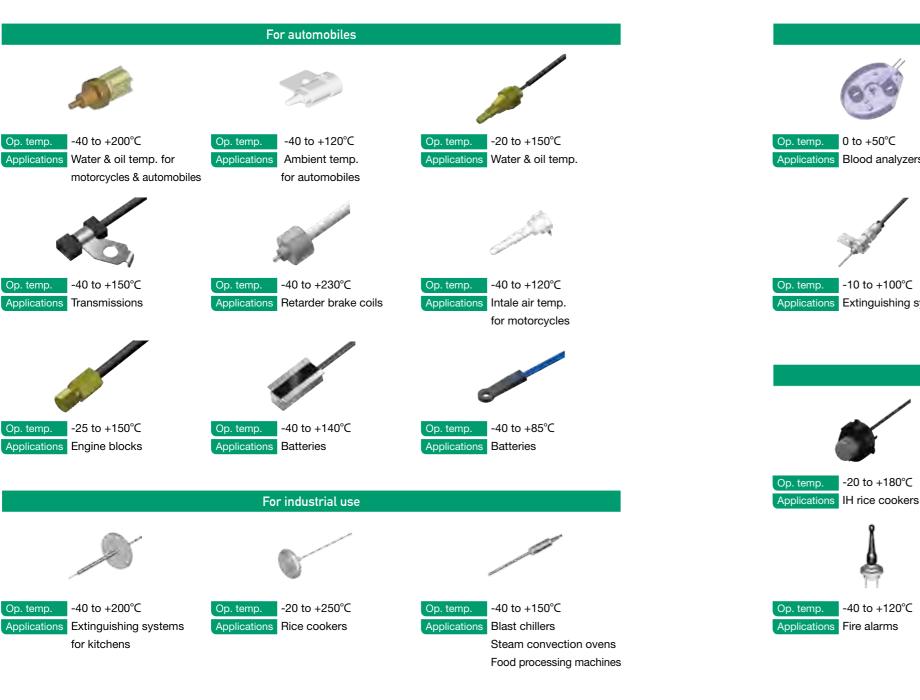


None of these will fit...



We know who to ask.




We provide special sensors to precisely fit your needs. Here is a part of our many custom-designed sensors.





Let's discuss how we can work it out.

Shibaura will design, test, analyze and make a sample of your sensor.





-20 to +180°C

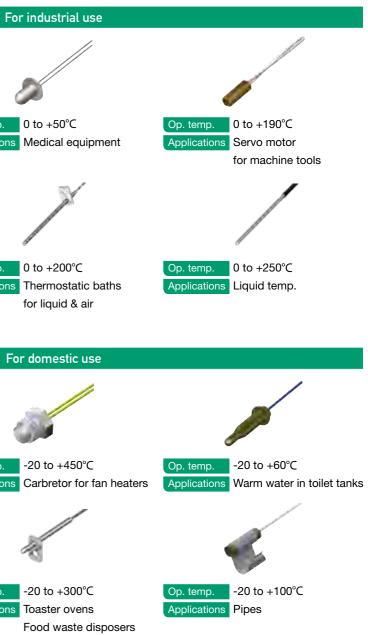
-40 to +120°C

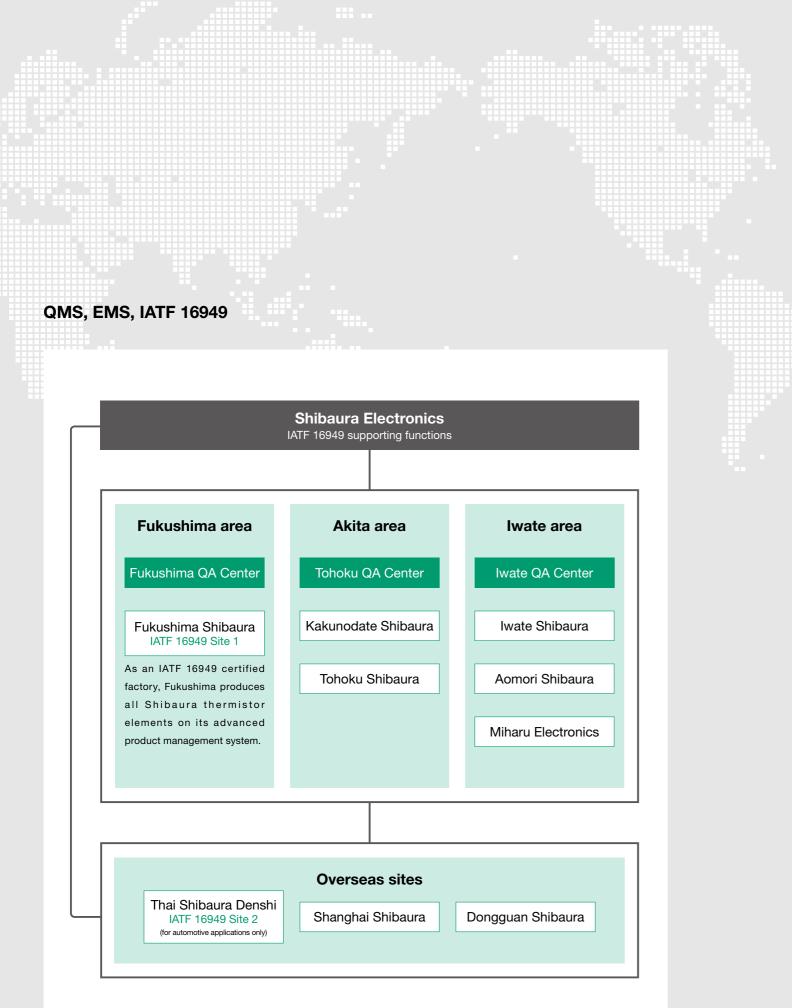
tions Fire alarms

mp.

For domestic use

-20 to +450°C Op. temp.





-20 to +300°C Op. temp. Toaster ovens Dishwashers

Cus



It's perfect!





#### As of September 2018

#### Manufacturing sites

Name	Location
Tohoku Shibaura Electronics Co., Ltd.	Senboku City, Akita Pref.
Kakunodate Shibaura Electronics Co., Ltd.	Senboku City, Akita Pref.
Iwate Shibaura Electronics Co., Ltd. (1st Factory)	Ninohe-gun, Iwate Pref.
Iwate Shibaura Electronics Co., Ltd. (2nd Factory)	Ninohe-gun, Iwate Pref.
Aomori Shibaura Electronics Co.,Ltd.	Sannohe-gun, Aomori Pref.
Fukushima Shibaura Electronics Co., Ltd. (Motomiya Factory)	Motomiya City, Fukushima Pref.
Fukushima Shibaura Electronics Co., Ltd. (Matsukawa Factory)	Fukushima City, Fukushima Pref.
Miharu Electronics Co., Ltd.	Sannohe-gun, Aomori Pref.
Shanghai Shibaura Electronics Co., Ltd.	Shanghai, China
Dongguan Shibaura Electronics Co., Ltd.	Dongguan, Guangdong, China
Thai Shibaura Denshi Co., Ltd.	Singburi, Thailand

#### Certification

ISO 9001, ISO 14001 certified

ISO 9001, ISO 14001, IATF 16949 certified

ISO 9001, ISO 14001 certified

ISO 9001, ISO 14001 certified

ISO 9001, ISO 14001 certified

ISO 9001, ISO 14001, IATF 16949^(*) certified (*)Only to manufacturing sites for automotive parts Manufacturing sit

### Directions for using our thermistor elements and sensors

### Shibaura thermistor elements in full scale

generation, explosion, electric shock to prevent burns (Check for any protection measures before use.)		PSB-S1	@
<ul> <li>Do not touch a self-heated thermistor with your hands or b</li> <li>Do not use a self-heated thermistor in flammable liquid or</li> </ul>	,		
Caution The directions given below must be followed to minim use, or desctruction of our product.	ize the risk of malfunction or damage of your equipment in	PSB-S2	•
•The product is designed for its specified application. Do not use it for any	when the product is connected by soldering.		
other applications other than that specified in the product specifications, this	•Be careful not to make contact with melted solder or a soldering iron with a		
catalogue or at the original design meetings.	thermistor element body and insulation on its wires.	PSB-S3	<b>3</b>
<ul> <li>Please consult us and ask for instructions from our qualified engineers when you need to rework or reprocess the product.</li> </ul>	<ul> <li>Do not tighten sensors equipped with a threaded protection tube with any torque over the specified value.</li> </ul>		
•Be sure to eliminate the risk of breaking the product caused by stress from	Do not bend wires or apply any external force near the neck of the product.		
constructional materials before applying any treatment such as resin molding	•Fix firmly the thermistor element wires, when bending or cutting them.		
around the product.	•Do not use the product in an atmosphere over 85%RH for a long time (except		
•Be sure there are no abnormalities with the product during reliability evaluation	for being used with measures such as waterproofing).	PSB-S5	
tests. These tests must be conducted in operation mode at the design stage. •Be careful not to apply any exceeding voltage onto the product, which may	<ul> <li>Be sure to provide warning for consumers not to touch the thermistor installed in an accessible area of your equipment.</li> </ul>		
cause functional failures of your equipment due to the decrease in resistance	•Do not use the product in the following atmospheres (except for being used		
by self-heating.	with measures such as chemicalproofing):		
•Be sure not to exceed the conditions described in the product specifications	•Corrosive gas (Cl ₂ , NH ₃ , SOx, NOx)		
when you set the type, time and amount of inrush current. •Do not use the product beyond the specified operating temperature range.	Highly conductive atmospheres (electrolyte, water, salt water)     Acid, alkali, organic solvent	PSB-S7	
•Do not subject the product beyond the specified operating temperature range.	•Dusty locations		
the upper or lower limit of the specified operating temperature range.	•When installing the product in your equipment, the following precautions must		
•Take every possible safety measure (such as setting a safety circuit, adding	be taken to avoid possibilities of malfunction in the equipment caused by		
another sensing device having equivalent functions to the product, etc.) to	incorrect temperature detection.		
avoid any accidents when using the product as a sensor assembly. <ul> <li>Take the following measures under the conditions that some noise may affect.</li> </ul>	<ul> <li>For detecting the temperature of gas, liquid and solid inside, install the product so that its sensing part can measure the ambient temperature</li> </ul>	PSB-S9	
Protection circuit	precisely without being affected by any heating elements or coolers.	1.50-57	
Shield for the product (incl. wires)	·For detecting temperature of the surface of a solid substance, make the		
•For sealing, be sure to check the reliability of sealing material by studying the	measured surface and the product stick tightly with grease or adhesive		
nature (physical and chemical properties and weatherproof), amount to be applied, hardening condition, adhesive property, etc. before processing.	which has good thermal conductivity. In addition, be careful not to be affected by ambient air or wind.		
•Do not apply any voltage over the rated value of withstand voltage between the	•The product equipped with a protection tube or a threaded protection tube may		
insulation and electrodes of the product.	cause malfunction in your equipment due to metal corrosion. The construction	NS II -E1	
•Do not use the product beyond the range of the rated or allowed maximum	and materials to be used must be taken into consideration.		
electric power. •Do not apply any vibration, shock (incl. dropping) or pressure beyond the	<ul> <li>Please consult us about installation conditions such as mechanical strength in order to prevent any defects when the product is to be fixed by pressing,</li> </ul>		
conditions defined in the product specifications.	tightening or insertion.		
•Do not repeatedly bend the wires beyond the conditions defined in the product	·Do not place any other components near a self-heated thermistor to prevent		
specifications.	malfunction occurring in the components.	NS II -E3	æ
<ul> <li>Do not apply any force to the wires beyond the conditions defined in the product specifications.</li> </ul>	<ul> <li>Store the products in their original packed condition at -10 to +40°C and below 75%RH. Avoid an atmosphere with drastic temperature changes, direct</li> </ul>		
•For thermistor sensors using a PVC cap or PVC wires: keep any materials	sunlight, corrosive gas, dust and do not apply any load stress. Otherwise, it		
causing flexible PVC to harden, away from the PVC cap or wires. (Such	may deteriorate or damage the products.		
materials include PS, ABS, silicone and rubber into which a plasticizer in PVC	·Unpacked thermistor elements must be stored in the minimum pack by		
can migrate.) •Do not attach or detach a connector or a thermistor sensor by pulling the wires.	resealing it, or keep it in a sealed container with desiccant.	NSⅢ-U1	<b>a</b>
Always pull the connector or the protection tube.			
•Keep the portions of wires to be connected in clean conditions without	If you have any questions on our products,		
contamination or rust to avoid imperfect or loose connection.	please feel free to contact our sales staff.		
•Be careful not to melt solder and insulation materials making up the product			_
		PSB-N	
Precautions		1381	
_			
<ul> <li>Please contact your nearest sales office for the latest version of proc</li> <li>The product specifications described in this catalogue vary accordin</li> </ul>			
	ge caused by improper use of the products that deviates from the		
characteristics, specifications, conditions including operating to	emperatures described in this catalogue.	KG2	-
	disputes that may occur in connection with any third party's intellectual	NG2	-
property rights and other related rights arising from usage of the pro	-		
	lisputes that may occur in connection with any third party's intellectual products described in this catalogue, except for those related to the		
structure and manufacturing methods of the product.			
	ange and Foreign Trade Law of Japan, the export license stipulated by		
law is required for export.	r potico	KG3	185
<ul> <li>The descriptions in this catalogue are subject to change without prio</li> <li>This publication may not be copied or reproduced in whole or in part</li> </ul>			
<ul> <li>This catalogue is current as of September 2018.</li> </ul>			

Directions

5		
	=	
(Formed example)►		

Shibaura thermistor elements in full sca